Plant Systematics and Evolution

, Volume 179, Issue 1–2, pp 43–58 | Cite as

Gene variation and gene flow inOrchis morio (Orchidaceae) from Italy

  • W. Rossi
  • B. Corrias
  • P. Arduino
  • R. Cianchi
  • L. Bullini


Data are presented on genetic variation at 27 enzyme loci of the Green-Winged orchid,Orchis morio, in 18 population samples from Italy. The existence in Italy of two subspecies, i.e. subspp.morio andpicta, is not supported by allozyme data. No genetic heterogeneity was found betweenmorio-like andpicta-like samples and specimens. Moreover, morphological transition between the two forms was observed in different Italian populations. The parameters of genetic variability estimated forO. morio populations are consistent with those found among monocotyledon plants, and among those outcrossing, animal-pollinated and with wind-dispersed seeds. Genetic diversity of ItalianO. morio is mostly within populations. Correspondingly, low values of interpopulational genetic distance were found. This appears to be due to high levels of gene flow, which were estimated with different methods. The lack ofO. longicornu from Italian samples, as well as of any hybrid withO. morio (F1, backcrossed or recombinant individuals) is demonstrated on the basis of genetic data. It is concluded that recurrent reports ofO. longicornu from Italy are due to confusion withO. morio or with otherOrchis species.

Key words

Angiosperms Orchidaceae Orchis morio subsp.morio O. morio subsp.picta O. longicornu Multilocus electrophoresis genetic variation gene flow morphology Flora of Italy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barton, N. H., Slatkin, M., 1986: A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. — Heredity56: 409–415.PubMedGoogle Scholar
  2. Baumann, H., Künkele, S., 1982: Die wildwachsenden Orchideen Europas. — Stuttgart: Kosmos, Gesellschaft der Naturfreunde, Frankh'sche Verlagshandlung.Google Scholar
  3. Bullini, L., Arduino, P., Cianchi, R., 1989: L'elettroforesi multilocus nello studio della variabilità e della divergenza genetica nelle piante. — Atti Soc. Tosc. Sci. Nat. Mem., Ser. B,96: 267–305.Google Scholar
  4. Buttler, K. P., 1986: Orchideen. Die wildwachsenden Arten und Unterarten Europas, Vorderasiens und Nordafrikas. — München: Mosaik Verlag.Google Scholar
  5. Corrias, B., Rossi, W., Arduino, P., Cianchi, R., Bullini, L., 1991:Orchis longicornu Poiret in Sardinia: genetic, morphological, and chorological data. — Webbia45: 71–101.Google Scholar
  6. Crow, J. F., Aoki, K., 1984: Group selection for a polygenic behavioral trait: estimating the degree of population subdivision. — Proc. Natl. Acad. Sci. U.S.A.81: 6073–6077.PubMedGoogle Scholar
  7. Davies, P., Davies, J., Huxley, A., 1983: Wild Orchids of Britain and Europe. — London: Chatto & Windus.Google Scholar
  8. Delforge, P., Tyteca, D., 1984: Guide des orchidées d'Europe. — Paris-Gembloux: Duculot.Google Scholar
  9. Del Prete, C., Tosi, G., 1988: Orchidee spontanee d'Italia. Monografia e iconografia. — Milano: Mursia.Google Scholar
  10. Fiori, A., 1923–1925: Nuova flora analitica d'Italia. — Firenze: Ricci.Google Scholar
  11. Gölz, P., Reinhard, H. R., 1984: Die Orchideenflora Albaniens. — Mitt. Bl. Arbeitskr. Heim. Orch. Baden-Württ.16: 193–394.Google Scholar
  12. Gottlieb, L. D., 1981: Electrophoretic evidence and plant populations. — Prog. Phytochem.7: 1–46.Google Scholar
  13. Hamrick, J. L., Linhart, Y. B., Mitton, B., 1979: Relationship between life history characteristics and electrophoretically detectable genetic variation in plants. — Ann. Rev. Ecol. Syst.10: 173–200.Google Scholar
  14. —, 1990: Allozyme diversity in plant species. — InBrown, A. D. H., Clegg, M. T., Kahler, A. L., Weir, B. S., (Eds.): Plant population genetics, breeding and genetic resources, pp. 43–63. — London, New York: Sinauer.Google Scholar
  15. Johnson, G. B., 1974: Enzyme polymorphism and metabolism. — Science184: 28–37.PubMedGoogle Scholar
  16. Kruskal, J. B., 1964a: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. — Psychometrika29: 1–27.Google Scholar
  17. —, 1964b: Nonmetric multidimensional scaling: a numerical method. — Psychometrika29: 28–42.Google Scholar
  18. Levene, H., 1949: On a matching problem arising in genetics. — Ann. Math. Stat.20: 91–94.Google Scholar
  19. Loveless, M. D., Hamrick, J. L., 1984: Ecological determinants of genetic structure in plant populations. — Ann. Rev. Ecol. Syst.15: 65–95.Google Scholar
  20. Nei, M., 1972: Genetic distance between populations. — Amer. Naturalist106: 283–292.Google Scholar
  21. —, 1973: Analysis of gene diversity in subdivided populations. — Proc. Natl. Acad. Sci. U.S.A.70: 3321–3323.PubMedGoogle Scholar
  22. —, 1978: Estimation of average heterozygosity and genetic distance from a small number of individuals. — Genetics89: 583–590.Google Scholar
  23. Nilsson, L. A., 1984: Anthecology ofOrchis morio (Orchidaceae) at its outpost in the North. — Nova Acta Reg. Soc. Sci. Upsal., Ser. V: C,3: 167–179.Google Scholar
  24. Pignatti, S., 1982: Flora d'Italia. — Bologna: Edagricole.Google Scholar
  25. Rogers, J. S., 1972: Measures of genetic similarity and genetic distance. — Studies in Genetics VII. — Univ. Texas Publ. (Austin)7213: 145–153.Google Scholar
  26. Rossi, W., Bassani, P., 1985: Orchidee spontanee del Lazio. — Roma: Edizioni Coopsit.Google Scholar
  27. Sarich, V. M., 1977: Rates, sample sizes and the neutrality hypothesis for electrophoresis in evolutionary studies. — Nature265: 24–28.PubMedGoogle Scholar
  28. Scacchi, R., De Angelis, G., Lanzara, P., 1990: Allozyme variation among and within elevenOrchis species (fam.Orchidaceae), with special reference to hybridizing aptitude. — Genetica81: 143–150.Google Scholar
  29. Schlegel, M., Steinbrück, G., Hahn, K., Röttger, B., 1989: Interspecific relationship of ten European orchid species as revealed by enzyme electrophoresis. — Pl. Syst. Evol.163: 107–119.Google Scholar
  30. Slatkin, M., 1981: Estimating levels of gene flow in natural populations. — Genetics99: 323–335.Google Scholar
  31. —, 1985a: Gene flow in natural populations. — Ann. Rev. Ecol. Syst.16: 393–430.Google Scholar
  32. —, 1985b: Rare alleles as indicators of gene flow. — Evolution39: 53–65.Google Scholar
  33. Slatkin, M., Barton, N. H., 1989: A comparison of three indirect methods for estimating average levels of gene flow. — Evolution43: 1349–1368.Google Scholar
  34. Sokal, R. R., Rohlf, F. J., 1981: Biometry. 2nd edn. — San Francisco: Freeman.Google Scholar
  35. Soó, R. von, 1980:Orchis. — InTutin, T. G., & al. (Eds.): Flora Europaea5: 339. — Cambridge: Cambridge University Press.Google Scholar
  36. Sundermann, H., 1980: Europäische und mediterrane Orchideen. Eine Bestimmungsflora, mit Berücksichtigung der Ökologie. — Hildesheim: Brücke-Verlag Kurt Schmersow.Google Scholar
  37. Terracciano, N., 1891: Synopsis Plantarum vascularium Montis Pollinii. — Annuario R. Ist. Bot. Roma4 (1889–1890): 1–191.Google Scholar
  38. Williams, J. G., Williams, A. E., Arlott, N., 1978: A field guide to the orchids of Britain and Europe with North Africa and the Middle east. — London: Collins.Google Scholar
  39. Workman, P. L., Niswander, J. D., 1970: Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. — Amer. J. Hum. Genet.22: 24–49.PubMedGoogle Scholar
  40. Wright, S., 1931: Evolution in Mendelian populations. — Genetics16: 97–159.Google Scholar
  41. —, 1951: The genetical structure of populations. — Ann. Eugen.15: 323–354.Google Scholar
  42. —, 1978: Evolution and the genetics of populations, 4. Variability within and among natural populations. — Chicago: University of Chicago Press.Google Scholar
  43. Zangheri, P., 1976: Flora italica. — Padova: Cedam.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • W. Rossi
    • 1
  • B. Corrias
    • 2
  • P. Arduino
    • 3
  • R. Cianchi
    • 3
  • L. Bullini
    • 3
  1. 1.Dipartimento di Biologica VegetaleUniversità di FirenzeFirenzeItaly
  2. 2.Istituto di BotanicaUniversità di SassariSassariItaly
  3. 3.Dipartimento di Genetica e Biologia MolecolareUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations