Plant Systematics and Evolution

, Volume 176, Issue 1–2, pp 35–51 | Cite as

Acid phosphatase activity during spore differentiation of the red algaeGigartina teedii andChondria tenuissima

  • I. Tsekos
  • E. Schnepf


The acid phosphatase activity during carposporogenesis inGigartina and tetrasporogenesis inChondria was studied using the Gomori technique. During the first steps of gonimoblast maturation ofGigartina, portions of cytoplasm are ensheathed by ER cisternae with acid phosphatase activity, giving rise to autolysosomal concentric membrane bodies. In a similar way large mucilage sacs are severed. They extrude their contents in a kind of exocytosis. Multivesicular bodies, concentrically arranged cisternae and extracytoplasmic compartments, each with acid phosphatase activity, remain in young carpospores for some time, probably as remnants of the autophagocytotic and exocytotic events. The Golgi apparatus is poorly developed in gonimoblast cells and young carpospores. It becomes a prominent cell component in maturing carpospores and then participates in cell wall formation. Only some of the dictyosomal cisternae contain acid phosphatase; these are irregularly distributed in the dictyosome. — In pre- and postmeiotic tetraspore mother cells ofChondria massive lead deposits are found in the dictyosomes and in adjacent Golgi vesicles. Finer lead precipitates occur in ER cisternae, especially in those which are sequestering starch-grain-containing portions of the cytoplasm to give rise to autolysosomes. During cell cleavage, the dictyosomes aggregate. They become devoid of acid phosphatase activity with the exception of vesicles at the trans face. Later, Golgi stacks associate and have common, Gomori positively reacting, narrow cisternae at the cis face. The Golgi apparatus derived “cored vesicles” do not contain lead precipitates whereas the Golgi cisternae in the final stage of tetrasporogenesis show acid phosphatase activity. Variations in acid phosphatase distribution are explained in the light of current models of membrane flow.

Key words

Algae Rhodophyta Gigartina teedii Chondria tenuissima Acid phosphatase localization autolysomes gonimoblast and carpospore development tetrasporogenesis spore ultrastructure Golgi apparatus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alley, C. D., Scott, J. L., 1977: Unusual dictyosome morphology and vesicle formation in tetrasporangia of the marine red algaPolysiphonia denudata. — J. Ultrastruct. Res.58: 289–298.PubMedGoogle Scholar
  2. Bainton, D. F., 1981: The discovery of lysosomes. — J. Cell Biol.91: 66s-72s.PubMedGoogle Scholar
  3. —, 1976: InDingle, J., Fell, H. B., (Eds.): Lysosomes in biology and pathology 5, pp. 3–32. — Amsterdam, Oxford: North Holland.Google Scholar
  4. Brown, R. M., Kleinig, H., Falk, H., Sitte, P., Franke, W., 1970: Scale formation in chrysophycean algae. — J. Cell Biol.45: 246–271.PubMedGoogle Scholar
  5. Delivopoulos, S. G., Kugrens, P., 1984: Ultrastructure of carposporogenesis in the parasitic red algaFaucheocolax attenuata Setch. (Rhodymeniales, Rhodymeniaceae). — Amer. J. Bot.71: 1245–1259.Google Scholar
  6. Duckett, J. G., Peel, M. C., 1978: The role of transmission electron microscopy in elucidating the taxonomy and phylogeny of theRhodophyta. — InIrvine, E. G., Price, J. H., (Eds.): Modern approaches to the taxonomy of red and brown algae, pp. 157–204. — London, New York: Academic Press.Google Scholar
  7. Dunphy, W. G., Rothman, J. E., 1985: Compartmental organization of the Golgi stack. — Cell42: 13–21.PubMedGoogle Scholar
  8. Eyden, B. P., 1975: Light and electron microscope study ofDunaliella primolecta Butcher (Volvocida). — J. Protozool.22: 336–344.Google Scholar
  9. Farquhar, M. G., 1985: Progress in unraveling pathways of Golgi traffic. — Ann. Rev. Cell Biol.1: 447–488.PubMedGoogle Scholar
  10. —, 1981: The Golgi apparatus (complex) — (1954–1981) — from artifact to center stage. — J. Cell Biol.91: 77s-103s.PubMedGoogle Scholar
  11. Gomori, G., 1952: Microscopic histochemistry. Principles and practice. — Chicago: University of Chicago Press.Google Scholar
  12. Griffiths, G., Simons, K., 1986: The trans Golgi network: sorting at the exit site of the Golgi complex. — Science234: 438–443.PubMedGoogle Scholar
  13. Kugrens, P., West, J. A., 1972: Ultrastructure of tetrasporogenesis in the parasitic red algaLevringiella gardneri (Setchell)Kylin. — J. Phycol.8: 370–383.Google Scholar
  14. Lenhard, J. M., Kasperek, E., Moore, B. R., Free, S. J., 1989: DevelopingDictyostelium discoideum cells contain two distinct acid hydrolase-containing vesicles. — Exp. Cell Res.182: 242–255.PubMedGoogle Scholar
  15. Matile, Ph., 1975: The lytic compartment of plant cells. — Cell Biology Monographs 1. — Wien, New York: Springer.Google Scholar
  16. Morré, D. J., Mollenhauer, H. H., 1974: The endomembrane concept: a functional integration of endoplasmic reticulum and Golgi apparatus. — InRobards, A. W., (Ed.): Dynamic aspects of plant ultrastructure, pp. 84–137. — London: McGraw Hill.Google Scholar
  17. Novikoff, P. M., 1987: The lysosomal concept: from isolated particles to acid hydrolase compartment of the cell. — Advances in Cell Biology1, pp. 59–95. — JAI Press Inc.Google Scholar
  18. Novikoff, A. B., Essner, E., Goldfischer, S., Heus, M., 1962: Nucleoside phosphatase activities of cytomembranes. — InHarris, R. J. C., (Ed.): Interpretation of ultrastructure I, Symp. Int. Soc. Cell Biol., pp. 149–192. — New York, London: Academic Press.Google Scholar
  19. Pueschel, C. M., 1979: Ultrastructure of tetrasporogenesis inPalmaria palmata (Rhodophyta). — J. Phycol.15: 409–424.Google Scholar
  20. Rambourg, A., Clermont, Y., Hermo, L., Secretain, D., 1987: Tridimensional architecture of the Golgi apparatus and its components in mucous cells of Brunner's glands of the mouse. — Amer. J. Anat.179: 95–107.PubMedGoogle Scholar
  21. Rothman, J. E., 1981: The Golgi apparatus: two organelles in tandem. — Science213: 1212–1219.PubMedGoogle Scholar
  22. Schnepf, E., 1984: The cytological viewpoint of functional compartmentation. — InWiessner, W., Robinson, D., Starr, R. C., (Eds.): Compartments in algal cells and their interaction, pp. 1–10. — Berlin, Heidelberg: Springer.Google Scholar
  23. Scott, J. L., Dixon, P. S., 1973: Ultrastructure of tetrasporogenesis in the marine red algaPtilota hypnoides. — J. Phycol.9: 29–46.Google Scholar
  24. Tsekos, I., 1981: Growth and differentiation of the Golgi apparatus and wall formation during carposporogenesis in the red algaGigartina teedi (Roth)Lamour. — J. Cell Sci.52: 71–84.PubMedGoogle Scholar
  25. —, 1982: Tumour-like growths induced by bacteria in the thallus of a red alga,Gigartina teedii (Roth)Lamour. — Ann. Bot.49: 123–126.Google Scholar
  26. —, 1983: The ultrastructure of the carposporogenesis inGigartina teedii (Roth)Lamour. (Gigartinales, Rhodophyceae): gonimoblast cells and carpospores. — Flora174: 191–211.Google Scholar
  27. —, 1985: The endomembrane system of differentiating carposporangia in the red algaChondria tenuissima: occurrence and participation in secretion of polysaccharidic and proteinaceous substances. — Protoplasma129: 127–136.Google Scholar
  28. —, 1988: Occurrence and transport of particle “tetrads” in the cell membranes of the unicellular red algaPorphyridium visualized by freeze-fracture. — J. Ultrastruct. Molec. Struct. Res.99: 156–168.Google Scholar
  29. —, —,Schnepf, E., 1985a: Occurrence of particle tetrads in the vacuole membrane of the marine red algaeGigartina teedii andCeramium rubrum. — Naturwiss.72: 489–490.Google Scholar
  30. —, 1985: Ultrastructure of the early stages of carposporophyte development in the red algaChondria tenuissima (Rhodomelaceae, Ceramiales). — Pl. Syst. Evol.151: 1–18.Google Scholar
  31. —, —,Makrantonakis, A., 1985b: The ultrastructure of tetrasporogenesis in the marine red algaChondria tenuissima (Good. etWoodw.) (Ceramiales, Rhodomelaceae). — Ann. Bot.55: 607–619.Google Scholar
  32. Wetherbee, R., 1978: Differentiation and continuity of the Golgi apparatus during carposporogenesis inPolysiphonia (Rhodophyta). — Protoplasma95: 347–360.Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • I. Tsekos
    • 1
  • E. Schnepf
    • 2
  1. 1.Institute of BotanyUniversity of ThessalonikiThessalonikiGreece
  2. 2.Lehrstuhl für Zellenlehre, Fakultät für BiologieUniversität HeidelbergHeidelbergGermany

Personalised recommendations