Skip to main content
Log in

Chromosome evolution within theOrnithogalum tenuifolium complex (Hyacinthaceae), with special emphasis on the evolution of bimodal karyotypes

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

Hypotheses on the evolution of the karyotypes of 8 chromosome races (2n = 4, 6, 8, 10, 12, 16-two forms, 26) within theOrnithogalum tenuifolium complex are discussed. Four of the karyotypes are strictly bimodal: 2n = 8 (6 long and two short chromosomes), 2n = 10 (6 long and 4 short chromosomes), 2n = 12 (6 long and 6 short chromosomes) and 2n = 16 (12 long and 4 short chromosomes). The hypotheses are tested by means of measurements of nuclear DNA content, studies of meiosis and pollen fertility of hybrids, and comparisons of karyotype morphology. The results indicate that the E. African 2n = 12 chromosome race is the most primitive and has given rise to the other chromosome races. The 2n = 6 race is found to have a significantly higher fitness than the 2n = 12 race.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett, M. D., Smith, J. B., 1976: Nuclear DNA amounts in Angiosperms. — Philos. Trans. Roy. Soc. London B274: 227–274.

    Google Scholar 

  • Brandham, P. E., 1983: Evolution in a stable chromosome system. — InBrandham, P. E., Bennett, M. D., (Eds.): Kew chromosome conference 2, pp. 251–260. — London: George Allen & Unwin.

    Google Scholar 

  • Conover, W. J., 1980: Practical nonparametric statistics. 2nd edn. — New York: Wiley.

    Google Scholar 

  • Darlington, C. D., 1963: Chromosome botany and the origins of cultivated plants. — New York: Hafner, and London: Geore Allen & Unwin.

    Google Scholar 

  • Kenton, A. Y., Rudall, P. J., Johnson, A. R., 1986: Genome size variation inSisyrinchium L. (Iridaceae) and its relationships to phenotype and habitat. — Bot. Gaz.147: 342–354.

    Google Scholar 

  • Levitsky, G. A., 1931: The karyotype in systematics. — Bull. Appl. Bot. Genet. Pl. Breed.27: 220–240.

    Google Scholar 

  • Obermeyer, A. A., 1978:Ornithogalum: a revision of the southern African species. — Bothalia12: 323–376.

    Google Scholar 

  • Solbrig, O. T., Solbrig, D. J., 1984: Size inequalities and fitness in plant populations. — InDawkins, R., Ridley, M., (Eds.): Oxford surveys in evolutionary biology 1. — Oxford: Oxford University Press.

    Google Scholar 

  • Stebbins, G. L., 1971: Chromosomal evolution in higher plants. — London: Edward Arnold.

    Google Scholar 

  • Stedje, B., 1988: A new low chromosome number forOrnithogalum tenuifolium. — Pl. Syst. Evol.161: 65–69.

    Google Scholar 

  • —,Nordal, I., 1984: Taxonomy and cytology of the genusOrnithogalum (Liliaceae) in East Africa. — Nordic J. Bot.4: 749–759.

    Google Scholar 

  • —, —, 1987: Cytogeographical studies ofHyacinthaceae in Africa south of the Sahara. — Nordic J. Bot.7: 53–65.

    Google Scholar 

  • Vosa, C. G., 1983: Chromosome evolution inOrnithogalum. — InBrandham, P. E., Bennett, M. D., (Eds.): Kew chromosome conference 2, p. 370. — London: George Allen & Unwin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stedje, B. Chromosome evolution within theOrnithogalum tenuifolium complex (Hyacinthaceae), with special emphasis on the evolution of bimodal karyotypes. Pl Syst Evol 166, 79–89 (1989). https://doi.org/10.1007/BF00937877

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00937877

Key words

Navigation