Skip to main content
Log in

Differential abundance of simple repetitive sequences in species ofBrassica and relatedBrassicaceae

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

SixBrassica species, known as the “triangle of U”, and four species from related genera were characterized by DNA fingerprinting with simple repetitive oligonucleotide probes. Our results show that CT-, TCC-, and GTG-repeat motifs are equally abundant in the genomes of the sixBrassica species. In contrast, GATA-, GGAT-, and GACA-multimers are unevenly distributed among different species. As judged from the number and strength of hybridization signals, the highest copy number of all three motifs occurs inBrassica nigra, while the lowest is observed inB. oleracea. The abundance of GATA-and GACA-repeats varies in a coordinate way. The amphidiploid genomes ofB. juncea, B. carinata, andB. napus each harbour intermediate amounts of (GATA)4 and (GACA)4-detected repeats as compared to their diploid progenitors, thus supporting the concept of the “U triangle”. GATA-, GACA-, and GGAT-repeats were also abundant inEruca sativa andSinapis arvensis, but not inRaphanus sativus andSinapis alba. These results support the idea thatBrassica nigra is more closely related toSinapis arvensis than to otherBrassica species such asB. rapa andB. oleracea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali, S., Müller, C. R., Epplen, J. T., 1986: DNA fingerprinting by oligonucleotide probes specific for simple repeats. — Hum. Genet.74: 239–243.

    Google Scholar 

  • Attia, T., Röbbelen, G., 1986: Cytogenetic relationship within cultivatedBrassica analysed in amphihaploids from the three diploid ancestors. — Canad. J. Genet. Cytol.28: 323–329.

    Google Scholar 

  • Chen, B. Y., Heneen, W. K., Simonsen, V., 1989: Comparative and genetic studies of isozymes in resynthesized and cultivatedBrassica napus L.,B. rapa L., andB. alboglabra Bailey. — Theor. Appl. Genet.77: 673–679.

    Google Scholar 

  • Chyi, Y.-S., Hoenecke, M. E., Sernyk, J. L., 1992: A genetic linkage map of restriction fragment length polymorphism loci forBrassica rapa (syn.campestris). — Genome35: 746–757.

    Google Scholar 

  • Delseny, M., McGrath, J. M., This, P., Chevre, A. M., Quiros, C. F., 1990: Ribosomal RNA genes in diploid and amphidiploidBrassica and related species: organization, polymorphism, and evolution. — Genome33: 733–744.

    Google Scholar 

  • Epplen, J. T., 1988: On simple repeated GATA/GACA sequences in animal genomes: a critical reappraisal. — J. Heredity79: 409–417.

    Google Scholar 

  • Grellet, F., Delcasso, D., Panabières, F., Delseny, M., 1986: Organization and evolution of a higher plant alphoid-like satellite DNA sequence. — J. Mol. Biol.187: 495–507.

    Google Scholar 

  • Gupta, V., Jagannathan, V., Lakshmikumaran, S., 1990: A novel AT-rich tandem repeat ofBrassica nigra. — Pl. Sci.68: 223–229.

    Google Scholar 

  • —, 1992: Characterization of species-specific repeated DNA sequences fromB. nigra. — Theor. Appl. Genet.84: 397–402.

    Google Scholar 

  • Harbinder, S., Lakshmikumaran, M., 1990: A repetitive sequence fromDiplotaxis erucoides is highly homologous to that ofBrassica rapa andB. oleracea. — Pl. Mol. Biol.15: 155–156.

    Google Scholar 

  • Hosaka, K., Kianian, S. F., McGrath, J. M., Quiros, C. F., 1989: Development and chromosomal localization of genome-specific DNA markers ofBrassica and the evolution of amphidiploids and n = 9 diploid species. — Genome33: 131–142.

    Google Scholar 

  • Iwabuchi, M., Itoh, K., Shimamoto, K., 1991: Molecular and cytological characterization of repetitive DNA sequences inBrassica. — Theor. Appl. Genet.81: 349–355.

    Google Scholar 

  • Kaemmer, D., Afza, R., Weising, K., Kahl, G., Novak, F. J., 1992: Oligonucleotide and amplification fingerprinting of wild species and cultivars of banana (Musa spp.). — Bio/Technology10: 1030–1035.

    Google Scholar 

  • Lakshmikumaran, M., Ranade, S. A., 1990: Isolation and characterization of a highly repetitive DNA ofBrassica rapa. — Pl. Mol. Biol.14: 447–448.

    Google Scholar 

  • Levinson, G., Gutman, G. A., 1987: Slipped strand mispairing: a major mechanism for DNA sequence evolution. — Mol. Biol. Evol.4: 203–221.

    Google Scholar 

  • McGrath, J. M., Quiros, C. F., Harada, J. J., Landry, B. S., 1990: Identification ofBrassica oleracea monosomic alien chromosome addition lines with molecular markers reveals extensive gene duplication. — Mol. Gen. Genet.223: 198–204.

    Google Scholar 

  • Palmer, J. D., 1988: Intraspecific variation and multicircularity inBrassica mitochondrial DNAs. — Genetics118: 341–351.

    Google Scholar 

  • —, 1983: Chloroplast DNA evolution and the origin of amphidiploidBrassica species. — Theor. Appl. Genet.65: 181–189.

    Google Scholar 

  • Poulsen, G. B., Kahl, G., Weising, K., 1993: Abundance and polymorphism of simple repetitive DNA sequences inBrassica napus L. — Theor. Appl. Genet.85: 994–1000.

    Google Scholar 

  • Pradhan, A. K., Prakash, S., Mukhopadhyay, A., Pental, D., 1992: Phylogeny ofBrassica and allied genera based on variation in chloroplast and mitochondrial DNA patterns: molecular and taxonomic classifications are incongruous. — Theor. Appl. Genet.85: 331–340.

    Google Scholar 

  • Prakash, S., Hinata, K., 1980: Taxonomy, cytogenetics, and origin of crop Brassicas, a review. — Opera Bot.55: 1–57.

    Google Scholar 

  • Reddy, A. S., Srivastava, V., Guha-Mukherjee, S., 1989: A tandemly repeated DNA sequence fromBrassica juncea. — Nucl. Acids Res.17: 5849.

    Google Scholar 

  • Röbbelen, G., 1960: Beiträge zur Analyse desBrassica-Genoms. — Chromosoma11: 205–228.

    Google Scholar 

  • Schmidt, T., Jung, C., Metzlaff, M., 1991: Distribution and evolution of two satellite DNAs in the genusBeta. — Theor. Appl. Genet.82: 793–799.

    Google Scholar 

  • Sibson, D. R., Hughes, S. G., Bryant, J. A., Fitchett, P. N., 1991: Sequence organization of simple, highly repetitive DNA elements inBrassica species. — J. Exp. Bot.42: 243–249.

    Google Scholar 

  • Slocum, M. K., Figdore, S. S., Kennard, W. C., Suzuki, J. Y., Osborn, T. C., 1990: Linkage arrangement of restriction fragment length polymorphism loci inBrassica oleracea. — Theor. Appl. Genet.80: 57–64.

    Google Scholar 

  • Song, K., Osborn, T. C., Williams, P. H., 1988:Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 1. Genome evolution of diploid and amphidiploid species. — Theor. Appl. Genet.75: 784–794.

    Google Scholar 

  • —, 1990:Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 3. Genome relationships inBrassica and related genera and the origin ofB. oleracea andB. rapa (syn.rapa). — Theor. Appl. Genet.79: 497–506.

    Google Scholar 

  • —, 1991: A linkage map ofBrassica rapa (syn.campestris) based on restriction fragment length polymorphism loci. — Theor. Appl. Genet.82: 296–304.

    Google Scholar 

  • Tautz, D., Renz, M., 1984: Simple sequences are ubiquitous repetitive components of eukaryotic genomes. — Nucl. Acids Res.12: 4127–4138.

    Google Scholar 

  • U, N., 1935: Genome analysis inBrassica with special reference to the experimental formation ofB. napus and peculiar mode of fertilization. — Japan J. Bot.7: 389–452.

    Google Scholar 

  • Warwick, S. I., Black, L. D., 1991: Molecular systematics ofBrassica and allied genera (subtribeBrassicinae, Brassicae) — chloroplast genome and cytodeme congruence. — Theor. Appl. Genet.82: 81–92.

    Google Scholar 

  • —, 1992: Molecular systematics ofBrassica and allied genera (subtribeBrassicinae, Brassicae) — chloroplast DNA variation in the genusDiplotaxis. — Theor. Appl. Genet.83: 839–850.

    Google Scholar 

  • Weising, K., Weigand, F., Driesel, A., Kahl, G., Zischler, H., Epplen, J. T., 1989: Polymorphic simple GATA/GACA repeats in plant genomes. — Nucl. Acids Res.17: 10128.

    Google Scholar 

  • —, 1991: Plant DNA fingerprinting with radioactive and digoxigenated oligonucleotide probes complementary to simple repetitive sequences. — Electrophoresis12: 159–169.

    Google Scholar 

  • —, 1992: Oligonucleotide fingerprinting reveals various probe-dependent levels of informativeness in chickpea (Cicer arietinum). — Genome35: 436–442.

    Google Scholar 

  • Xia, X., Selvaraj, G., Bertrand, H., 1993: Structure and evolution of a highly repetitive DNA sequence fromBrassica napus. — Pl. Mol. Biol.21: 213–224.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poulsen, G.B., Kahl, G. & Weising, K. Differential abundance of simple repetitive sequences in species ofBrassica and relatedBrassicaceae . Pl Syst Evol 190, 21–30 (1994). https://doi.org/10.1007/BF00937856

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00937856

Key words

Navigation