Advertisement

Mycorrhizae of actinorhizal plants

  • Isobel C. Gardner
Giam VII-Invited Papers

Summary

Actionorhizal nodules occur on some 200 species from 20 different and apparently unrelated angiosperm genera. These plants, typically woody perennials ranging in habit from semiprostrate shrubs to massive trees, can, by virtue of their nitrogen-fixing capacity, grow on and colonize substrates low in combined nitrogen. Many of these plants additionally support a mycorrhizal association. In some cases the mycorrhizal association is exclusively ecto, in others exclusively endo while in yet others both ecto and endo are recorded from the same plant. The type of infection occurring and the actual nature of the endophyte associated with a particular host species would appear to vary depending on the habitat of the host, the prevailing environmental conditions and associated plant species. Laboratory studies on the physiological relationships existing between the host plant and its nodular and mycorrhizal endophytes indicate that in general a mycorrhizal infection can lead to increased uptake of phosphate, increased nodulation and increased nitrogenase resulting in overall enhancement of plant growth and yield. It is also evident, however, that to establish an efficient triple symbiosis consideration must be given to endophyte specificity and genetic variability, inoculation regimes and environmental factors. These will be discussed in relation to host response in the field and to the formulation of field inoculation procedures. The importance of a mycorrhizal association in relation to the resistance of certain actinorhizal plants to water stress and to pathogens will also be discussed. Finally consideration will be given to the impact of mycorrhizal associations on the contribution that such plants can make in stress areas and in agroforestry on a global scale.

Keywords

Triple Symbiosis Mycorrhizal Association Massive Tree Mycorrhizal Infection Woody Perennial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

de ces plantes présentent en outre des associations mycorhiziennes. Celles-çi sont soit ectotrophes, soit endo-trophes, soit encore, dans le cas de certaines plantes, à la fois ecto-et endotrophes. Le type d'infection et la nature de l'endophyte associé à une plante donnée varient suivant l'habitat de l'hôte, les conditions de l'environnement et les espèces de plantes associées. Les études de laboratoire sur les relations physiologiques entre la plante-hôte et ses endophytes nodulaires et mycorhiziens indiquent que, d'une manière générale, l'infection mycorhizienne accroît l'absorption des phosphates, la nodulation, et l'activité nitrogénase, ce qui augmente de façon globale la croissance et le rendement de la plante. II est d'autre part évident que l'établissement d'une triple symbiose efficace dépend de la spécificité de l'endophyte, de sa variabilité génétique, du mode d'inoculation et de facteurs environnementaux. Ces différents points sont discutés en se référant à la réponse de l'ôte et au mode d'inoculation sur le terrain. D'autre part, l'importance des associations mycorhiziennes en ce qui concerne la résistance de certaines plantes actinorhiziennes à la sécheresse et aux agents pathogènes est discutée. Enfin, ce travail comporte des considérations sur l'importance des associations mycorhiziennes pour la contribution que ce groupe de plantes peut apporter en zone aride et, d'une manière générale, en agronomie forestière.

Resumen

Alrededor de 200 especies a 20 generos de Angiospermas distintos y aparentemente no relacionados presentan nódulos actinorrízicos. Dichas plantas, tipicamente perennes y leñosas cuyo hábitat va desde matorrales semi-postrados hasta árboles de grant tamaño, pueden, debido a su capacidad para fijar nitrógeno, crecen y colonizan sustratos deficientes en nitrógeno combinado. Muchas de estas plantas forman además una asociación micorrízica, en algunos casos exclusivamente ecto- en otros exclusivamente endo-, pudiendose encontrar casos con ambos tipos a la vez. El tipo de infección y la naturaleza del endófito asociado con una especie de huésped particular parece variar con el hábitat del huésped, las condiciones ambientales predominantes y las especies de plantas asociadas. Estudios de laboratorio de las relaciones fisiológicas existentes entre la planta huésped y sus endófitos nodulares y micorrízicos indican que en general una infección micorrízica conduce a un incremento en la absorción de P, en la nodulación, y en los niveles de nitrogenasa resultando todo ello en una mejora del crecimiento y del rendimiento de la planta. Es evidente que, sin embargo, para establecer una triple simbiosis de este tipo ha de considerarse la especificidad del endófito y su variabilidad genética, así como el tipo de inoculación y los distintos factores ambientales implicados. Todo ello ha de ser discutido en relación con la respuesta del huésped en el campo y con la forma de inoculación a emplear. También se discute la importancia de la asociación micorrízica en relación con la resistencia de distintas plantas actinorrízicas al stress hídrico y a ciertos patógenos. Finalmente tambíen se toma en cuenta el impacto que las asociaciones micorrízicos pueden tener en áreas con problemas y en silvicultura en general.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andeke-Lengui, M.A. &Dommergues, Y. 1983 Coastal sand dune stabilisation in Senegal. In CasuarinaEcology, Management and Utilisation, ed. Midgeley, S.J., Turnbull, J.W. & Johnston, R.D. Melbourne: CSIRO.Google Scholar
  2. Asimi, S., Gianinazzi-Pearson, V. &Gianinazzi, S. 1980 Influence of increasing soil phosphorus levels on interactions between vesicular-arbuscular mycorrhizae andRhizobium in soybeans.Canadian Journal of Botany 58, 2200–2205.Google Scholar
  3. Bamber, R.K., Mullette, K. &Mackowski, C. 1980 Mycorrhizal studies. InResearch Report 1977–1978, Australian Forestry Commission of New South Wales, Sydney, Australia.Google Scholar
  4. Bond, G. 1983 Taxonomy and distribution of non-legume nitrogen-fixing systems. InBiological Nitrogen Fixation in Forest Ecosystems: Foundations and Applications, ed. Gordon, J.C. & Wheeler, C.T. pp. 55–87. The Hague: Martinus Nijhoff/Dr W Junk Publishers.Google Scholar
  5. Clelland, D.M. 1984 The vesicular-arbuscular mycorrhizal association ofZea mays andHippophae rhamnoides L. A physiological, ultrastructural and cytochemical appraisal of the symbiosis. Ph.D. Thesis, University of Strathclyde, Glasgow, U.K.Google Scholar
  6. Clelland, D.M., Gardner, I.C. &Scott, A. 1983 Occurrence ofGlomus fasciculatus, a mycorrhizal endophyte, in the nitrogen-fixing non-legumeHippophae rhamnoides.Microbios Letters 24, 107–113.Google Scholar
  7. Clemencon, H. 1977 UberMelanogaster microsporus undAlpova diplophloeus.Schweizerische Zeitschrift für Pelzkunde 55, 155–156.Google Scholar
  8. Cooper, K.A. 1984 Physiology of VA mycorrhizal associations. InVA Mycorrhiza, ed. Powell, C.L. Florida, USA.: CRC Press Inc.Google Scholar
  9. Daft, M.J. 1983 The influence of mixed inocula on endomycorrhizal development.Plant and Soil 73, 331–337.Google Scholar
  10. Daft, M.J., Clelland, D.M. &Gardner, I.C. 1985 Symbiosis with endomycorrhizas and nitrogen-fixing organisms.Proceedings of the Royal Society of Edinburgh 85B, 283–298.Google Scholar
  11. El-Giahmi, A.A., Nicolson, T.H. &Daft, M.J. 1976 Endomycorrhizal fungi from Libyan soils.Transactions of the British Mycological Society 67, 164–170.Google Scholar
  12. Frank, A.B. 1888 Ueber die physiologische Bedeutung der Mycorhiza.Bericht der Deutschen Botanischen Gesellschaft Berlin 6, 248–269.Google Scholar
  13. Gardner, I.C., Clelland, D.M. &Scott, A. 1984 Mycorrhizal improvement in nonleguminous nitrogen fixing associations with particular reference toHippophae rhamnoides L.Plant & Soil 78, 189–200Google Scholar
  14. Gauthier, D., Diem, H.G. &Dommergues, Y. 1983 Preliminary results of research onFrankia and Endomycorrhizae associated withCasuarina equisetifolia. In CasuarinaEcology Management and Utilization, ed. Midgeley, S.J., Turnbull, J.W. & Johnston, R.D. pp. 211–217, Melbourne: CSIRO.Google Scholar
  15. Godbout, C. &Fortin, J.A. 1983 Morphological features of synthesised ectomycorrhizae ofAlnus crispa andA. rugosa.New Phytologist 94, 249–262.Google Scholar
  16. Gordon, J.C., &Dawson, J.F. 1979 Potential use of nitrogen-fixing tress and shrubs in commercial forestry.Botanical Gazette 140, S88-S90.Google Scholar
  17. Green, T.L., McNabb, H.S. &Mize, C.W. 1979 Symbiosis amongAlnus spp.: Actinorhizae and Mycorrhizae. InSymbiotic N-fixation in the Management of Temperate Forests, ed. Gordon, J.C., Wheeler, C.T. & Perry, D.A.: Corvallis, Oregon: Oregon State University.Google Scholar
  18. Hall, I.R. 1984 Taxonomy of VA mycorrhizal fungi. InVA Mycorrhiza, ed. Powell, C.L. Florida, USA: CRC Press Inc.Google Scholar
  19. Hall, R.B., McNabb, H.S., Maynard, C.A. &Green, T.L. 1979 Toward development of optimalAlnus glutinosa symbioses.Botanical Gazette 140, (Suppl) S120–126.Google Scholar
  20. Harley, J.L. &Smith, S.E. 1983Mycorrhizal Symbiosis, London: Academic Press.Google Scholar
  21. Heap, A.J. &Newman, E.I. 1980a Links between roots by hyphae of vesicular-arbuscular mycorrhizae.New Phytologist 85, 169–171.Google Scholar
  22. Heap, A.J. &Newman, E.I. 1980b The influence of vesicular arbuscular mycorrhizae on phosphorus transfer between plants.New Phytologist 85, 173–179.Google Scholar
  23. Hepper, C.M. 1983 The effect of nitrate and phosphate on the vesicular arbuscular mycorrhizal infection of lettuce.New Phytologist 92, 389–399.Google Scholar
  24. Horak, V.E. 1963 Pilzokilogische Untersuchungen in der subalpinen Stufe (Picetum subalpinum undRhodoreto vaccinietum) der Ratischen Alpen.Mitteilungen Schweiz.Anstalt Forstliche Versuchswesen 39, 1–112.Google Scholar
  25. Kandas, S. 1983.Casuarina equisetifolia—a multipurpose tree cash crop in India. In CasuarinaEcology, Management & Utilisation, ed. Midgeley, S.J., Turnbull J.W. & Johnston, R.D. Melbourne: CSIRO.Google Scholar
  26. Klemmedson, J.O. 1979 Ecological importance of actinomycete nodulated plants in the Western United States.Botanical Gazette 140, S91-S96.Google Scholar
  27. Malloch, D. &Malloch, B. 1981. The mycorrhizal status of boreal plants: species from northeastern Ontario.Canadian Journal of Botany 59, 2167–2172.Google Scholar
  28. Malloch, D. &Malloch, B. 1982 The mycorrhizal status of boreal plants: additional species from north-eastern Ontario.Canadian Journal of Botany 60, 1035–1040.Google Scholar
  29. Marx, D.H. 1981 Significance of source, age and revitalisation to isolate variability inPisolithus tinctorius.Canadian Journal of Forestry Research 11, 168–174.Google Scholar
  30. Marx, D.H. &Daniel, W.J. 1976 Maintaining cultures of ecto-mycorrhizal and plant pathogenic fungi in sterile water cold storage.Canadian Journal of Microbiology 22, 338–341.Google Scholar
  31. Masui, K. 1926. A study of the ectotrophic mycorrhiza ofAlnus.Memoirs of the College of Science, Kyoto Imperial University, Series B 2, 189–209.Google Scholar
  32. Mejstrik, V. 1971 Ecology of mycorrhizae of tree species applied in reclamation of legnit spoil banks.Nova Hedwigia 22, 675–698.Google Scholar
  33. Mejstrik, V. &Beneche, U. 1969 The ectotrophic mycorrhizas ofAlnus viridis (Chaix) D.C. and their significance in respect to phosphorus uptake.New Phytologist 68, 141–149.Google Scholar
  34. Molina, R. 1979 Pure culture synthesis and host specificity of red alder mycorrhizae.Canadian Journal of Botany 57, 1223–1228.Google Scholar
  35. Molina, R. 1981 Ectomycorrhizal specificity in the genusAlnus.Canadian Journal of Botany 59, 325–334Google Scholar
  36. Molina, R. &Trappe, J.M. 1982 Patterns of ectomycorrhizal host specificity and potential among Pacific Northwest conifers and fungi.Forestry Science 28, 423–458.Google Scholar
  37. Mikola, P. 1970 Mycorrhizal inoculation in afforestation.International Review of Forestry Research 3, 123–196.Google Scholar
  38. Mikola, P., Gomala P. &Malkonen, E. 1983 Application of biological nitrogen fixation in European silviculture. InBiological Nitrogen Fixation in Forest Ecosystems; Foundations and Applications, ed. Gordon, J.C. & Wheeler, C.T.. The Hague: Nijhoff-Junk Publ.Google Scholar
  39. National Academy of Sciences 1980 Firewood Crops. Shurb and tree species for energy production. Report of an Ad Hoc Panel of the Advisory Committee on Technology Innovation, Board on Science & Technology for International Development, Commission on International Relations.Google Scholar
  40. Neal, J.L., Trappe, J.M., Lu, K.C. &Bollen, W.B. 1968 Some ectotrophic mycorrhizae ofAlnus rubra. InBiology of Alder, ed. Trappe, J.M., Franklin, J.F., Tarrant, R.F. & Hanson, G.M.. pp. 178–184. Portland, Oregon: Pacific Northwest Forest and Range Experimental Station, U.S. Forest Service.Google Scholar
  41. Oremus, P.A.J. &Otten 1981 Factors affecting growth and nodulation ofHippophae rhamnoides L. spp.rhamnoides in soils from two successional stages of dune formation.Plant and Soil 63, 317–331.Google Scholar
  42. Resch, H. 1979 Industrial uses and utilisation potential for red alder. InSymbiotic Nitrogen Fixation in the Management of Temperate Forests, ed. Gordon, J.C., Wheeler, C.T. & Perry, D.A., Corvallis, Oregon: Oregon State University.Google Scholar
  43. Rose, S.L. 1980 Mycorrhizal associations of some actinomycete nodulated nitrogen fixing plants.Canadian Journal of Botany 58, 1449–1454.Google Scholar
  44. Rose, S.L. &Youngberg, C.F. 1981 Tripartite associations in snowbrush (Ceanothus veluntinus): effect of vesicular-arbuscular mycorrhizae on growth, nodulation and nitrogen fixation.Canadian Journal of Botany 59, 34–39.Google Scholar
  45. Safir, G.R., Boyer, J.S. &Gerdemann, J.W. 1971 Mycorrhizal enhancement of water transport in soybean.Science, N.Y. 172, 581–583.Google Scholar
  46. Safir, G.R., Boyer, J.S. &Gerdemann, J.W. 1972 Nutrient status and mycorrhizal enhancement of water transport in soybean.Plant Physiology 49, 700–703.Google Scholar
  47. Silvester, W.B. 1983 Analysis of nitrogen fixation. InBiological Nitrogen Fixation in Forest Ecosystems: Foundations and Applications, ed. Gordon, J.C. & Wheeler, C.T. The Hague: Nijhoff/Junk Publ.Google Scholar
  48. Sprent, J. 1979The Biology of Nitrogen Fixing Organisms. London: McGraw-Hill Book Company (UK) Ltd.Google Scholar
  49. Thiagalingam, K. 1983 Role of casuarina in agroforestry. In CasuarinaEcology, Management & Utilization ed. Midgeley, S.J., Turnbull, J.W. & Johnston R.D. Melbourne: CSIRO.Google Scholar
  50. Torrey, J.C. 1983 Root development and root nodulation inCasuarina. In CasuarinaEcology, Management and Utilisation, ed. Midgley, S.J., Turnbull, J.W. & Johnston, R.D. pp. 180–192. Melbourne: CSIRO.Google Scholar
  51. Trappe, J.M. 1962 Fungus associates of ectotrophic mycorrhizae,Botanical Review 28, 538–606Google Scholar
  52. Trappe, J.M. 1964 Mycorrhizal hosts and distribution ofCenococcum graniforma.Lloydia 27, 100–106.Google Scholar
  53. Trappe, J.M. 1972 Regulation of soil organisms by red alder: a potential biological system for control ofPoria weirii.Oregon State University Forestry Symposium 3, 35–51.Google Scholar
  54. Trappe, J.M. 1975 A revision of the genusAlpova with notes onRhizopogon and the Melanogastracea.Nova Hedwigia 51, 279–309.Google Scholar
  55. Trappe, J.M. 1979 Mycorrhiza-nodule-host interrelationship in symbiotic nitrogen fixation; a quest in need of questers. In Symbiotic Nitrogen Fixation in the Management of Temperate Forests, ed. Gordon, J.C., Wheeler, C.T. & Perry, D.A. Corvallis, Oregon: Oregon State University.Google Scholar
  56. Turnbull, J.W. 1983 The use ofCasuarina equisetifolia for protection forests in China. In CasuarinaEcology Management and Utilisation, ed. Midgeley, S.J., Turnbull, J.W. & Johnston, R.D., Melbourne: CSIRO.Google Scholar
  57. Wheeler, C.T., Benson, L.E. &McLaughlin, M.E. 1979 Hormones in plants bearing actinomycete nodules.Botanical Gazette 140, S52-S57.Google Scholar
  58. Wheeler, C.T. &McLaughlin, M.E. 1979 Environmental nodulation and nitrogen fixation in actinomycete nodulated plants. InSymbiotic Nitrogen Fixation in the Management of Temperate Forests, ed. Gordon, J.C., Wheeler, C.T. & Perry, D.A. Corvallis, Oregon: Oregon State University.Google Scholar
  59. Williams, S.E. 1979 Vesicular arbuscular mycorrhizae associated with actinomycete nodulated shrubs,Cercocarpus montanis RAF. andPurshia tridentata (Pursh.) DCBotanical Gazette 140, S115-S119Google Scholar

Copyright information

© Oxford University Press 1986

Authors and Affiliations

  • Isobel C. Gardner
    • 1
  1. 1.Biology Division, Department of Bioscience & BiotechnologyUniversity of StrathclydeGlasgowUK

Personalised recommendations