Skip to main content
Log in

On predicting particle-laden turbulent flows

  • Published:
Applied Scientific Research Aims and scope Submit manuscript

Abstract

The paper provides an overview of the challenges and progress associated with the task of numerically predicting particle-laden turbulent flows. The review covers the mathematical methods based on turbulence closure models as well as direct numerical simulation (DNS). In addition, the statistical (pdf) approach in deriving the dispersed-phase transport equations is discussed. The review is restricted to incompressible, isothermal flows without phase change or particle-particle collision. Suggestions are made for improving closure modelling of some important correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Andresen, E., Statistical approach to continuum models for turbulent gas-particle flows. Ph.D. Dissertation, Technical University of Denmark (1990).

  2. Berlemont, A., Desjonqueres, P. and Gouesbet, G., Particle Lagrangian simulation in turbulent flows.Int. J. Multiphase Flow 16 (1990) 19–34.

    Google Scholar 

  3. Buyevich, Yu. A., Statistical hydromechanics of disperse. Part 2: Solution of the kinetic equation for suspended particles.J. Fluid Mech. 52 (1972) 345–355.

    Google Scholar 

  4. Chao, B. T., Turbulent transport behavior of small particles in dilute suspension.Österr. Ing. Arch. 18 (1964) 7.

    Google Scholar 

  5. Chen, S., Doolen, G. D., Kraichnan, R. H. and She, Z. S., On statistical correlations between velocity increments and locally averaged dissipation in homogeneous turbulence.Phys. Fluids A5 (1993) 458–463.

    Google Scholar 

  6. Crowe, C. T., Chung, J. N. and Trout, T. R., Particle mixing in free shear flows.Prog. Energy Combust. Sci. 14 (1988) 171–194.

    Google Scholar 

  7. Csanady, G. T., Turbulent diffusion of heavy particles in the atmosphere.J. Atm. Sci. 20 (1963) 201–208.

    Google Scholar 

  8. Elghobashi, S. E., Particle-laden turbulent flows: direct simulation and closure models.Appl. Sci. Res. 48 (1991) 301–314.

    Google Scholar 

  9. Elghobashi, S. E. and Abou Arab, T. W., A two-equation turbulence model for two-phase flows.Phys. Fluids 26 (1983) 931–938.

    Google Scholar 

  10. Elghobashi, S. E., Abou Arab, T. W., Rizk, M. and Mostafa, A., Prediction of the particle-laden jet with a two-equation turbulence model.Int. J. Multiphase Flow 10 (1984) 697.

    Google Scholar 

  11. Elghobashi, S. E. and Truesdell, G. C., Direct simulation of particle dispersion in a decaying isotropic turbulence.Seventh Symposium on Turbulent Shear Flows, Stanford University (1989).

  12. Elghobashi, S. E. and Truesdell, G. C., Direct simulation of particle dispersion in grid turbulence and homogeneous shear flows.Bull. Am. Phys. Soc. 34 (1989) 2311.

    Google Scholar 

  13. Elghobashi, S. E. and Truesdell, G. C., Direct simulation of particle dispersion in decaying isotropic turbulence.J. Fluid Mech. 242 (1992) 655–700.

    Google Scholar 

  14. Elghobashi, S. E. and Truesdell, G. C., On the two-way interaction between homogeneous turbulence and dispersed solid particles, part 1: turbulence modification.Phys. Fluids A5 (1993) 1790–1801.

    Google Scholar 

  15. Gosman, A. D. and Ioanides, E., Aspects of computer simulation of liquid-fuelled combustors.AIAA 19th Aerospace Sciences Meeting, St. Louis, MO, Paper No. 81-0323 (1981).

  16. Hwang, G. J. and Shen, H. H., Modeling the solid-phase stress in a fluid-solid mixture.Int. J. Multiphase Flow 15 (1989) 257–268.

    Google Scholar 

  17. Kim, I., Elghobashi, S. and Sirignano, W., Three dimensional flow interactions between a cylindrical vortex tube and a spherical particle.J. Fluid Mech. (submitted, 1993).

  18. Kim, I., Elghobashi, S. and Sirignano, W., Three dimensional flow over two spheres placed side by side.J. Fluid Mech. 246 (1993) 465–488.

    Google Scholar 

  19. Lopez de Bertodano, M., Lee, S.-J., Lahey, R. T., Jr. and Drew, D. A., The prediction of two-phase turbulence and phase distribution phenomena using a Reynolds stress model.J. Fluids Eng. 112 (1990) 107–113.

    Google Scholar 

  20. MacInnes, J. M. and Bracco, F. V., Stochastic particle dispersion and the tracer-particle limit.Phys. Fluids A4 (1992) 2809–2824.

    Google Scholar 

  21. Marble, F. E., Dynamics of gas containing small solid particles.Proceedings of the 5th AGARD Symposium, Combustion and Propulsion, Pergamon, New York (1963) pp. 175–215.

    Google Scholar 

  22. Maxey, M. R., The equation of motion for a small rigid sphere in a nonuniform or unsteady flow.ASME-Fluids Eng. Div. 166 (1993) 57–62.

    Google Scholar 

  23. Maxey, M. R. and Riley, J. J., Equation of motion for a small rigid sphere in a nonuniform flow.Phys. Fluids 26 (1983) 883–889.

    Google Scholar 

  24. McLaughlin, J. B., Aerosol particle deposition in numerically simulated channel flow.Phys. Fluids A1 (1989) 1211–1224.

    Google Scholar 

  25. McLaughlin, J. B., Inertial migration of a small sphere in linear shear flow.J. Fluid Mech. 224 (1991) 261–274.

    Google Scholar 

  26. Reeks, M. W., On a kinetic equation for the transport of particles in turbulent flows.Phys. Fluids A3 (1991) 446–456.

    Google Scholar 

  27. Reeks, M. W., On the continuum equations for dispersed particles in nonuniform flows.Phys. Fluids A4 (1992) 1290–1303.

    Google Scholar 

  28. Reeks, M. W., On the constitutive relations for dispersed particles in nonuniform flows. I: Dispersion in a simple shear flow.Phys. Fluids A5 (1993) 750–763.

    Google Scholar 

  29. Riley, J. J. and Patterson, G. S., Jr., Diffusion experiments with numerically integrated isotropic turbulence.Phys. Fluids 17 (1974) 292.

    Google Scholar 

  30. Saffman, P. G., The life on a small sphere in a slow shear flow.J. Fluid Mech. 22 (1965) 385–400.

    Google Scholar 

  31. Saffman, P. G., The lift on a small sphere in a slow shear flow — corrigendum.J. Fluid Mech. 31 (1968) 624.

    Google Scholar 

  32. Snyder, W. H. and Lumley, J. L., Some measurements of particle velocity autocorrelation functions in a turbulent flow.J. Fluid Mech. 48 (1971) 41.

    Google Scholar 

  33. Squires, K. D. and Eaton, J. K., Measurements of particle dispersion obtained from direct numerical simulations of isotropic turbulence.J. Fluid Mech. 226 (1991) 1–35.

    Google Scholar 

  34. Taylor, G. I., Diffusion by continuous movement.Proc. Lond. Math. Soc. A20 (1921) 196.

    Google Scholar 

  35. Yudine, M. I., Physical considerations on heavy-particle diffusion.Adv. Geophys. 6 (1959) 185–191.

    Google Scholar 

  36. Yuu, S., Yasukouchi, N., Hirosawa, Y. and Jotaki, T., Particle turbulent diffusion in a dust-laden round jet.J. AIChE 24 (1978) 509–519.

    Google Scholar 

  37. Zhou, Q. and Leschziner, M. A., A time-correlated stochastic model for particle dispersion in anisotropic turbulence.Eight Symposium on Turbulent Shear Flows 1 (1991) 1031–1036.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elghobashi, S. On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309–329 (1994). https://doi.org/10.1007/BF00936835

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00936835

Keywords

Navigation