Skip to main content
Log in

Variation at isozyme loci inTriticeae

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

An electrophoretic comparison of variation at 16 presumptive isozyme gene loci was performed for 17 species from the tribeTriticeae. Included in the analysis were annuals and perennials, and self- and cross-pollinating species, representing the H, I, P, N, R, V, S, E, J, J1J2, A, B, and D genomes. Perennial species were found to contain a significantly (marginally, at the 5% level) higher proportion of polymorphic loci and level of heterozygosity, than annual species. There were no significant differences between self- and crosspollinating species. Across all species, mean heterozygosity levels ranged from 0–0.225 and the % polymorphic loci from 6.3–56.3%. Genetic distance estimates varied from 0.08–0.39 for congeneric species. Relationships were deduced between the 17 species using phenetic and cladistic analyses and compared with relationships inferred from other parameters such as morphology and nucleotide sequence data. In general, the trees derived from the various relationships were concordant; the evolutionary basis for minor discrepancies between trees is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, M. L., Baker, R. J., Honeycutt, R. L., 1983: Genic differentiation and phylogenetic relationships within two New World bat genera. — Biochem. Syst. Zool.11: 295–303.

    Google Scholar 

  • Asins, M. J., Carbonell, E. A., 1986a: A comparative study on variability and phylogeny ofTriticum species. 1. Intraspecific variability. — Theor. Appl. Genet.72: 551–558.

    Google Scholar 

  • —, —, 1986b: A comparative study on variability and phylogeny ofTriticum species. 2. Interspecific relationships. — Theor. Appl. Genet.72: 559–568.

    Google Scholar 

  • Avise, J. C., Aquadro, C. F., 1982: A comparative summary of genetic distances in the vertebrates. — Evol. Biol.15: 151–185.

    Google Scholar 

  • —,Patton, J. C., Aquadro, C. F., 1980a: Evolutionary genetics of birds. I. Relationships among North American thrushes and allies. — The Auk97: 135–147.

    Google Scholar 

  • —, —, —, 1980b: Evolutionary genetics of birds. II. Conservative protein evolution in North American sparrows and relatives. — Syst. Zool.29: 323–334.

    Google Scholar 

  • Ayala, F. J., 1975: Genetic differentiation during the speciation process. — Evol. Biol.8: 1–78.

    Google Scholar 

  • —,Tracey, M. L., Barr, L. G., McDonald, J. F., Perez-Salas, S., 1974: Genetic variation in natural populations ofDrosophila species and the hypothesis of the selective neutrality of protein polymorphisms. — Genetics77: 343–384.

    Google Scholar 

  • Baverstock, P. R., Archer, M., Adams, M., Richardson, B. K., 1982: Genetic relationships among 32 species of Australian dasyurid marsupials. — InArcher, M., (Ed.): Carnivorous marsupials, pp. 641–650. — Royal Society of N.S.W.

  • Benito, C., Figueiras, A. M., Gonzalez-Jaen, M. T., 1985a: Phosphogluco mutase—a biochemical marker for group 4 chromosomes in theTriticinae. — Theor. Appl. Genet.6 B: 555–557.

    Google Scholar 

  • —, —, —, 1985b: Biochemical evidence of homoeology between wheat and barley chromosomes. — Z. Pflanzenzüchtung94: 307–320.

    Google Scholar 

  • —, —, —, 1987: Location of genes coding isozyme markers onAegilops umbellulata chromosomes adds data on homoeology amongTriticeae chromosomes. — Theor. Appl. Genet.73: 581–588.

    Google Scholar 

  • Bosch, A., Figueiras, A. M., Gonzalez-Jaen, M. T., Benito, C., 1986: Leaf peroxidases — a biochemical marker for the group 2 chromosomes in theTriticinae. — Genet. Res.47: 103–107.

    Google Scholar 

  • Britten, R. J., 1986: Rates of DNA sequence evolution differ between taxonomic groups. — Science231: 1393–1398.

    Google Scholar 

  • Brody, T., Mendlinger, S., 1980: Species relationships and genetic variation in the diploid wheats (Triticum, Aegilops) as revealed by starch gel electrophoresis. — Pl. Syst. Evol.136: 247–258.

    Google Scholar 

  • Brown, A. H. D., Matheson, A. C., Eldridge, K. G., 1975: Estimation of the mating system ofEucalyptus obliqua L'Herit. by using allozyme polymorphisms. — Austral. J. Bot.23: 931–949.

    Google Scholar 

  • —,Nevo, E., Zohary, D., Dagan, O., 1978a: Genetic variation in natural populations of wild barley (Hordeum spontaneum). — Genetica49: 97–108.

    Google Scholar 

  • —,Zohary, D., Nevo, E., 1978b: Outcrossing rates and heterozygosity in natural populations ofHordeum spontaneum Koch. in Israel. — Evolution33: 815–833.

    Google Scholar 

  • Bruce, E. J., Ayala, F. J., 1979: Phylogenetic relationships between man and the apes: electrophoretic evidence. — Evolution33: 1040–1056.

    Google Scholar 

  • Coyne, J. A., 1982: Gel electrophoresis and cryptic protein variation. — InRatazzi, M. C., Scandalios, J. G., Whitt, G. S., (Eds.): Isozymes: Current topics in biological and medical research6, pp. 1–32. — New York: Liss Inc.

    Google Scholar 

  • Dewey, D. R., 1984: The genomic system of classification as a guide to intergeneric hybridization with the perennialTriticeae. — Stadler Genetics Symposium16: 209–280.

    Google Scholar 

  • Farris, J. S., 1972: Estimating phylogenetic trees from distance matrices. — Amer. Naturalist106: 645–668.

    Google Scholar 

  • Feldman, M., 1966: Identification of unpaired chromosomes in F1 hybrids involvingTriticum aestivum andT. timopheevii. — Canad. J. Genet. Cytol.8: 144–151.

    Google Scholar 

  • Gill, B. S., Appels, R., 1988: Relationships betweenNor-loci from differentTriticeae species. — Pl. Syst. Evol.160: 77–89.

    Google Scholar 

  • Goodman, M., Weiss, M. L., Czelusniak, J., 1982: Molecular evolution above the species level: branching pattern, rates, and mechanisms. — Syst. Zool.31: 376–399.

    Google Scholar 

  • Gottlieb, L. D., 1973: Enzyme differentiation and phylogeny inClarkia franciscana, L. rubicunda andC. amoena. — Evolution27: 205–214.

    Google Scholar 

  • —, 1976: Electrophoretic evidence and plant systematics. — Ann. Missouri Bot. Gard.64: 161–180.

    Google Scholar 

  • Harris, H., Hopkinson, D. A., 1976: Handbook of electrophoresis in human genetics. — Amsterdam: North-Holland.

    Google Scholar 

  • Hart, G. E., 1983: Hexaploid wheat (Triticum aestivum L. em.Thell). — InTanksley, S. D., Orton, T. J., (Eds.): Isozymes in plant genetics and breeding, Part B, pp. 35–56. — Amsterdam: Elsevier Science Publishers.

    Google Scholar 

  • —,Islam, A. K. M. R., Shepherd, K. W., 1980: Use of isozymes as chromosome markers in the isolation of wheat-barley chromosome addition lines. — Genet. Res.35: 311–325

    Google Scholar 

  • Hennig, W., 1966: Phylogenetic systematics. — Urbana: Univ. Illinois Press.

    Google Scholar 

  • Jaaska, V., 1976: Aspartate aminotransferase isoenzymes in the polyploid wheats and their diploid relatives on the origin of tetraploid wheat. — Biochem. Physiol. Pfl.170: 159–171.

    Google Scholar 

  • —, 1978: NADP-dependent aromatic alcohol dehydrogenases in polyploid wheat and their diploid relatives. On the origin and phylogeny of polyploid wheat. — Theor. Appl. Genet.53: 209–217.

    Google Scholar 

  • —, 1980: Electrophoretic survey of seedling esterases in wheats in relation to their phylogeny. — Theor. Appl. Genet.56: 273–284.

    Google Scholar 

  • —, 1981: Aspartate aminotransferase and alcohol dehydrogenase isoenzymes: intraspecific differentiation inAegilops tauschii and the origin of the D genome polyploids in the wheat group. — Pl. Syst. Evol.137: 259–273.

    Google Scholar 

  • Johnson, B. L., 1972: Seed protein profiles and the origin of the hexaploid wheat. — Proc. Natl. Acad. Sci. U.S.A.69: 1398–1402.

    Google Scholar 

  • —,Dhaliwal, H. S., 1976: Reproductive isolation ofT. boeticum andT. urartu and the origin of the tetraploid wheat. — Amer. J. Bot.63: 1088–1094.

    Google Scholar 

  • Kahler, A. L., Allard, R. W., Kratzakowa, C. F., Wehrhahn, C. F., Nevo, E., 1980: Association between isozyme phenotypes and environment in the slender wild oat (Avena barbata) in Israel. — Theor. Appl. Genet.56: 37–47.

    Google Scholar 

  • Koebner, R. M. D., Shepherd, K. W., 1982: Shikimate dehydrogenase—a biochemical marker for group 5 chromosomes in theTriticinae. — Genet. Res.41: 209–213.

    Google Scholar 

  • Kreitman, M., 1983: Nucleotide polymorphism at the alcohol dehydrogenase locus ofDrosophila melanogaster. — Nature304: 412–417.

    Google Scholar 

  • Lanyon, S. M., 1985: Molecular perspective on higher-level relationships in theTyrannoidae (Aves). — Syst. Zool.34: 404–418.

    Google Scholar 

  • Lawrence, G. J., Appels, R., 1986: Mapping the nucleolus organiser region, seed protein loci and isozyme loci on chromosome 1 R in rye. — Theor. Appl. Genet.71: 742–749.

    Google Scholar 

  • Levy, M., Levin, D. A., 1975: Genic heterozygosity and variation in permanent translocation heterozygotes of theOenothera biennis complex. — Genetics79: 493–512.

    Google Scholar 

  • Lewontin, R. C., 1985: Population genetics. — Ann. Rev. Genet.19: 81–102.

    Google Scholar 

  • Löve, A., 1984: Conspectus of theTriticeae. — Feddes Repert.95: 425–521.

    Google Scholar 

  • Loveless, M. D., Hamrick, J. L., 1984: Ecological determinants of genetic structure in plant populations. — Ann. Rev. Ecol. Syst.15: 65–95.

    Google Scholar 

  • McIntyre, C. L., Clarke, B. C., Appels, R., 1988a: Amplification and dispersion of repeated DNA sequences in theTriticeae. — Pl. Syst. Evol.160: 39–59.

    Google Scholar 

  • —, —, —, 1988b: DNA sequence analyses of the ribosomal spacer regions in theTriticeae. — Pl. Syst. Evol.160: 91–104.

    Google Scholar 

  • Melderis, A., Humphries, C. J., Tutin, T. G., Heathcote, S. A., 1980: TribeTriticeae Dumort. — InTutin, T. G., & al. (Eds.): Flora Europaea5, pp. 190–206. — Cambridge: University Press.

    Google Scholar 

  • Nei, M., 1978: Estimation of average heterozygosity and genetic distance from a small number of individuals. — Genetics89: 583–590.

    Google Scholar 

  • Nevo, E., Zohary, D., Brown, A. H. D., Haber, M., 1979: Genetic diversity and environmental associations of wild barley,Hordeum spontaneum, in Israel. — Evolution33: 815–833.

    Google Scholar 

  • —,Golenberg, E., Beiles, A., Brown, A. H. D., 1982: Genetic diversity and environmental association of wild wheat,Triticum dicoccoides, in Israel. — Theor. Appl. Genet.62: 241–254.

    Google Scholar 

  • Patton, C., Baker, R. J., Avise, J. C., 1981: Phenetic and cladistic analyses of biochemical evolution in peromyscine rodents. — InSmith, M. H., Joule, J., (Eds.): Mammalian population genetics, pp. 288–308. — Athens: University of Georgia Press.

    Google Scholar 

  • Powling, A., Islam, A. K. M. R., Shepherd, K. W., 1981: Isozymes in wheat-barley hybrid derivative lines. — Biochem. Genet.19: 237–253.

    Google Scholar 

  • Prager, E. M., Wilson, A. C., 1976: Congruency of phylogenies derived from different proteins. A molecular analysis of the phylogenetic position of Cracid birds. — J. Mol. Evol.9: 45–57.

    Google Scholar 

  • —, —, 1978: Construction of phylogenetic trees for proteins and nucleic acids: empirical evaluation of alternative matrix methods. — J. Mol. Evol.11: 129–142.

    Google Scholar 

  • Rogers, J. S., 1972: Measures of genetic similarity and distance. Studies in Genetics VII. — University of Texas Publication7203: 145–153.

    Google Scholar 

  • Roose, M. L., Gottlieb, L. D., 1976: Genetic and biochemical consequences of polyploidy inTragopogon. — Evolution30: 818–830.

    Google Scholar 

  • Salinas, J., Figueiras, A. M., Gonzalez-Jaen, M. T., Benito, C., 1985: Chromosomal location of isozyme markers in wheat-barley addition lines. — Theor. Appl. Genet.70: 192–198.

    Google Scholar 

  • Scoles, G. J., Gill, B. S., Xin, Z.-Y., Clarke, B. C., McIntyre, C. L., Chapman, C., Appels, R., 1987: Frequent duplication and deletion events in the 5 S RNA genes and the associated spacer regions of theTriticeae. — Pl. Syst. Evol.160: 105–122.

    Google Scholar 

  • Shaw, C. R., Prasad, R., 1970: Starch gel electrophoresis of enzymes—a compilation of recipes. — Biochem. Genet.4: 297–320.

    Google Scholar 

  • Sibley, C. G., Ahlquist, J. E., 1984: The phylogeny of the hominoid primates, as indicated by DNA-DNA hybridisation. — J. Mol. Evol.20: 2–15.

    Google Scholar 

  • Sites, J. W., Bickham, J. W., Pytel, B. A., Greenbaum, I. F., Bates, B. A., 1984: Biochemical characters and the reconstruction of turtle phylogenies: relationships among batagurine genera. — Syst. Zool.33: 137–158.

    Google Scholar 

  • Sneath, P. H. A., Sokal, R. R., 1973: Numerical taxonomy. — San Francisco: W. H. Freeman.

    Google Scholar 

  • Swofford, D. L., 1984: Phylogenetic analysis using parsimony. Version 2.3. — Illinois Natural History Survey, Publication.

  • —,Selander, R. K., 1981: A computer program for the analysis of allelic variation in genetics. — J. Heredity72: 281–283.

    Google Scholar 

  • Sytsma, K. J., Gottlieb, L. D., 1986: Chloroplast DNA evolution and phylogenetic relationships inClarkia sect.Peripetasma (Onagraceae). — Evolution40: 1248–1261.

    Google Scholar 

  • —,Schaal, B. A., 1985a: Genetic variation, differentiation and evolution in a species complex of tropical shrubs based on isozyme data. — Evolution39: 582–592.

    Google Scholar 

  • —, —, 1985b: Phylogenetics of theLisianthus skinneri (Gentianaceae) species complex in Panama utilising DNA restriction fragment analysis. — Evolution39: 594–609.

    Google Scholar 

  • Tang, K. S., Hart, G. E., 1975: Use of isozymes as chromosome markers in wheat-rye addition lines and in triticale. — Genet. Res.26: 187–201.

    Google Scholar 

  • Tice, R. R., Setlow, R. B., 1985: InSchneider, E. L., (Ed.): Handbook of the biology of aging, pp. 1–202. — New York: Van Nostrand Reinhold.

    Google Scholar 

  • Tsvelev, N. N., 1904: Tribe 3.Triticeae Dum. — InPoaceae U.R.S.S., pp. 105–206. — Leningrad: Nauka.

    Google Scholar 

  • Wang, R. R.-C., 1985: Genome analysis ofThinopyrum bessarabicum andT. elongatum. — Canad. J. Genet. Cytol.27: 722–728.

    Google Scholar 

  • —, 1986a: Diploid perennial intergeneric hybrids in the tribeTriticeae. I.Agropyron cristatum ×Pseudoroegneria libanotica andCritesion violaceum ×Psathyrostachys juncea. — Crop Sci.26: 75–78.

    Google Scholar 

  • —, 1986b: Diploid perennial intergeneric hybrids in the tribeTriticeae. II. Hybrids ofThinopyrum elongatum andPseudoroegneria spicata andCritesion violaceum. — Biol. Zentralbl.105: 361–368.

    Google Scholar 

  • —, 1987: Diploid perennial intergeneric hybrids in the tribeTriticeae. III. Hybrids amongSecale montanum, Pseudoroegneria spicata andAgropyron mongolicum. — Genome29: 80–84.

    Google Scholar 

  • Xin, Z.-Y., Appels, R., 1988: Occurrence of rye (Secale cereale) 350-family DNA sequences inAgropyron and otherTriticeae. — Pl. Syst. Evol.160: 65–76.

    Google Scholar 

  • Zohary, D., 1966: The evolution of genomes inAegilops andTriticum. — InMackey, J., (Ed.): Proc. 2nd. Int. Wheat Genet. Symp. — Hereditas, Suppl.2: 207–217.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McIntyre, C.L. Variation at isozyme loci inTriticeae . Pl Syst Evol 160, 123–142 (1988). https://doi.org/10.1007/BF00936714

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00936714

Key words

Navigation