Plant Systematics and Evolution

, Volume 160, Issue 1–2, pp 1–28 | Cite as

Evolution and systematic relationships in theTriticeae (Poaceae)

  • J. G. West
  • C. L. McIntyre
  • R. Appels


The evolution and taxonomic relationships in theTriticeae are discussed with the view to highlight aspects of this agronomically important group of plants, which may be of interest to molecular biology. Some of these aspects are addressed in more detail in adjoining papers in which specific genomic loci have been examined at the DNA sequence or isozyme level. Aspects discussed include the systematics and geographic distribution of theTriticeae species, isozyme and chromosome pairing studies on some of the species as well as more recent developments in DNA analyses. A survey of the systematics of theTriticeae indicated that the genomic system ofLöve is probably the most useful starting point for interpreting molecular data even though the system has many problems from a taxonomic point of view. The geographical distribution ofTriticeae species, using both published and unpublished data, suggested that information of this type taken together with the theory of continental drift provides a broad time-span for considering data from DNA sequence studies. The significance, and modes of analyses, of isozyme studies were assessed because they often provide valuable characters in determining relationships between species. The main character underlyingLöve's andDewey's analyses of theTriticeae, namely chromosome pairing, is discussed with particular reference to isozyme studies to show that in some cases, such as species ofHordeum sensu lato, consistent relationships are obtained. Finally, new developments in understanding chromosome structure are considered in relation to the above variables in the taxonomy and evolution of theTriticeae.

Key words

Angiosperms Poaceae Triticeae Systematics phylogeny cladistic phytogeography isozyme analyses chromosome pairing DNA analyses relationships molecular evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alonso, L. C., Kimber, G., 1981: The analysis of meiosis in hybrids. II. Triploid hybrids. — Canad. J. Genet. Cytol.23: 221–234.Google Scholar
  2. Appels, R., 1982: The molecular cytology of wheat-rye hybrids. — Int. Rev. Cytol.80: 93–132.Google Scholar
  3. —,Dvorak, J., 1982: Relative rates of divergence of spacer and gene sequences within the rDNA region of species in theTriticeae: implications for the maintenance of homogeneity of a repeated gene family. — Theor. Appl. Genet.63: 361–365.Google Scholar
  4. —,Peacock, W. J., 1978: The arrangement and evolution of highly repeated (satellite) DNA sequences with special reference toDrosophila. — Int. Rev. Cytol. Suppl.8: 69–126.Google Scholar
  5. —,Scoles, G., Chapman, C. G. D., 1987: The nature of change in nuclear DNA in the evolution of the grasses. — InDutro, N. P., (Ed.): 1st international symposium on grass systematics and evolution, pp. 73–87. — Washington, D.C.: Smithsonian Institution.Google Scholar
  6. Asins, M. J., Carbonell, E. A., 1986: A comparative study on availability and phylogeny ofTriticum species 2. Interspecific relationships. — Theor. Appl. Genet.72: 559–568.Google Scholar
  7. Avdulov, N. P., 1931: Karyo-systematische Untersuchungen der Familie Gramineen. — Bull. Appl. Bot. Genet. Plant Breed.44 (Suppl. 4): 1–428.Google Scholar
  8. Axelrod, D. I., 1952: A theory of angiosperm evolution. — Evolution6: 29–60.Google Scholar
  9. Baum, B. R., 1978a: Taxonomy of the tribeTriticeae (Poaceae) using various numerical techniques. II. Classification. — Canad. J. Bot.56: 27–56.Google Scholar
  10. —, 1978b: Generic relationships inTriticeae based on computations of Jardine and Sibson Bk clusters. — Canad. J. Bot.56: 2948–2954.Google Scholar
  11. —, 1978c: Taxonomy of the tribeTriticeae (Poaceae) using various numerical techniques. III. Synoptic key to genera and synopses. — Canad. J. Bot.56: 374–385.Google Scholar
  12. —, 1983: A phylogenetic analysis of the tribeTriticeae (Poaceae) based on morphological characters of the genera. — Canad. J. Bot.61: 518–535.Google Scholar
  13. Baum, B. R., Tulloch, A. P., 1982: A survey of epicuticular waxes among genera ofTriticeae. III. Synthesis and conclusion. — Canad. J. Bot.60: 1761–1770.Google Scholar
  14. —,Estes, J. R., Gupta, P. K., 1987: Assessment of the genomic system of classification in theTriticeae. — Amer. J. Bot.74: 1388–1395.Google Scholar
  15. Bennett, M. D., Smith, J. B., 1976: Nuclear DNA in Angiosperms. — Phil. Trans. Royal Soc. (London), Series B,274: 227–274.Google Scholar
  16. Bor, N. L., 1960: The grasses of Burma, Ceylon, India and Pakistan. — InRollins, R. C., Taylor, G., (Eds.): International series of monographs on pure and applied biology, Botany Division1: 26–27. — Oxford London New York Paris: Pergamon Press.Google Scholar
  17. Brettell, R. I. S., Pallotta, M. A., Gustafson, J. P., Appels, R., 1986: Variation at theNor loci inTriticale derived from tissue culture. — Theor. Appl. Genet.71:637–643.Google Scholar
  18. Buth, D. G., 1984: The application of electrophoretic data in systematic studies. — Ann. Rev. Ecol. Syst.15: 501–522.Google Scholar
  19. Cech, T. R., Tanner, N. K., Tinoco, Jr., I.,Weir, B. R., Zucker, M., Perlman, R. S., 1983: Secondary structure of theTetrahymena ribosomal RNA intervening sequence: structural homology with fungal mitochondrial intervening sequences. — Proc. Natl. Acad. Sci. U.S.A.80: 3903–3907.Google Scholar
  20. Clayton, W. D., 1975: Chorology of the genera ofGramineae. — Kew Bull.30: 111–132.Google Scholar
  21. —, 1981: Evolution and distribution of grasses. — Ann. Missouri Bot. Gard.68: 5–14.Google Scholar
  22. —,Cope, T. A., 1980a: The chorology of Old World species ofGramineae. — Kew Bull.35: 135–171.Google Scholar
  23. —, —, 1980b: The chorology of North American species ofGramineae. — Kew Bull.35: 451–452.Google Scholar
  24. —,Renvoize, S. A., 1986: Genera Graminum. Grasses of the world. — Kew Bull. Addit. Ser.XIII. — London: H. M. Stationery Office.Google Scholar
  25. Coyne, J. A., 1981: Gel electrophoresis and cryptic protein variation. — Isozymes: Current topics in biological and medical research6: 1–32.Google Scholar
  26. Craw, R. C., Grehan, J. R., Heads, M. J., 1984: Croizat's panbiogeography and principal botanica — series of papers edited byR. C. Craw andG. W. Gibbs. — Tuatara27: 1–74.Google Scholar
  27. Crisci, J. F., Stuessy, T. F., 1980: Determining primitive character states for phylogenetic reconstruction. — Syst. Bot.5: 112–135.Google Scholar
  28. Cross, R. A., 1980: Distribution of sub-families ofGramineae in the Old World. — Kew Bull.35: 279–289.Google Scholar
  29. Dahlgren, R. M. T., Clifford, H. T., Yeo, P. F., 1985: The families of the monocotyledons: structure and evolution. — Berlin Heidelberg New York Tokyo: Springer.Google Scholar
  30. Darlington, C. D., Wylie, A. P., 1956: Chromosome atlas of flowering plants. — New York: Hafner.Google Scholar
  31. Darnell, J. E., Doolittle, W. F., 1986: Speculations on the early course of evolution. — Proc. Natl. Acad. Sci. U.S.A.83: 1271–1275.Google Scholar
  32. Dewey, D. R., 1984: The genomic system of classification as a guide to intergeneric hybridization within the perennialTriticeae. — Stadler Gen. Symp.16: 209–280.Google Scholar
  33. Doyle, J. J., 1987: Plant systematics at the DNA level: promises and pitfalls. — International Organization of Plant Biosystematics, Newsletter8: 3–7.Google Scholar
  34. Dvorak, J., Jue, D., Lassner, M., 1987: Homogenization of tandemly repeated nucleotide sequences by distance-dependent nucleotide sequence conversion. — Genetics116: 487–498.Google Scholar
  35. Edwards, A. W. F., Cavalli-Sforza, L. L., 1963: The reconstruction of evolution. — Ann. Hum. Genet.27: 104–105.Google Scholar
  36. Edwards, G., Walker, D., 1983: C3, C4: mechanisms, and cellular and environmental regulation of photosynthesis. — Oxford Univ. Press: Blackwell Scientific.Google Scholar
  37. Estabrook, G. F., Meacham, C. A., 1979: How to determine the compatibility of undirected character state trees. — Math. Biosci.46: 251–256.Google Scholar
  38. —,Johnson, C. S., McMorris, F. R., 1976a: An algebraic analysis of cladistic characters. — Discrete Mathematics16: 141–147.Google Scholar
  39. —, —, —, 1976b: A mathematical foundation for the analysis of cladistic character compatibility. — Math. Biosci.29: 181–187.Google Scholar
  40. Farris, J. S., 1969: A successive approximations approach to character weighting. — Syst. Zool.18: 374–385.Google Scholar
  41. —, 1972: Estimating phylogenetic trees from distance matrices. — Amer. Naturalist106: 645–668.Google Scholar
  42. Felsenstein, J., 1981: A likelihood approach to character weighting and what it tells us about parsimony and compatibility. — Biol. J. Linn. Soc.16: 183–196.Google Scholar
  43. —, 1982: Numerical methods for inferring evolutionary trees. — Quart. Rev. Biol.57: 379–404.Google Scholar
  44. —, 1985: Phylogenies from gene frequencies: a statistical problem. — Syst. Zool.34: 300–311.Google Scholar
  45. Fink, W. L., 1986: Microcomputers and phylogenetic analysis. — Science234: 1135–1139.Google Scholar
  46. Finnegan, D. J., 1985: Transposable elements in eukaryotes. — Int. Rev. Cytol.93: 281–326.Google Scholar
  47. Fitch, W. M., Margoliash, E., 1967: Construction of phylogenetic trees. — Science155: 279–284.Google Scholar
  48. Flavell, R. B., 1987: Chromosomal changes during speciation at the molecular level. — Abstr. Int. Bot. Congress Berlin 5-42-1.Google Scholar
  49. Gilbert, W., 1978: Why genes in pieces. — Nature271: 501.Google Scholar
  50. Gill, B. S., Appels, R., 1987: Relationships betweenNor-loci from differentTriticeae species. — Pl. Syst. Evol.160: 77–89.Google Scholar
  51. Glaszmann, J. C., 1987: Isozymes and classification of Asian rice varieties. — Theor. Appl. Genet.74: 21–30.Google Scholar
  52. Gottlieb, L. D., 1976: Electrophoretic evidence and plant systematics. — Ann. Missouri Bot. Gard.64: 161–180.Google Scholar
  53. Gustafson, J. P., Lukaszewski, A. J., Bennett, M. D., 1983: Somatic deletion and redistribution of telomeric heterochromatin in the genusSecale and inTriticale. — Chromosoma88: 293–298.Google Scholar
  54. Hamby, R. K., Zimmer, E. A., 1988: Ribosomal RNA sequences for inferring phylogeny within the grass family (Poaceae). — Pl. Syst. Evol.160: 29–37.Google Scholar
  55. Harberd, N. P., Flavell, R. B., Thompson, R. D., 1987: Identification of a transposonlike insertion in a Glu-1 allele of wheat. — Mol. Gen. Genet.209: 326–332.Google Scholar
  56. Hartley, W., 1950: The global distribution of tribes of theGramineae in relation to historical and environmental factors. — Austral. J. Agric. Res.1: 355–373.Google Scholar
  57. —, 1973: Studies on the origin, evolution, and distribution of theGramineae. V. The subfamilyFestucoideae. — Austral. J. Bot.21: 201–234.Google Scholar
  58. Hedrick, P. W., 1983: Genetics of populations. — Boston: Sci. Books Int.Google Scholar
  59. Hsaio, C., Wang, R. R.-C., Dewey, D. R., 1986: Karyotype analysis and genome relationships of 22 diploid species in the tribeTriticeae. — Canad. J. Genet. Cytol.28: 109–120.Google Scholar
  60. Hutchinson, J., 1973: The families of flowering plants, ed. 3. — Oxford: University Press.Google Scholar
  61. Jones, G. H., 1978: Giemsa C-banding of rye meiotic chromosomes and the nature of “terminal chiasmata”. — Chromosoma66: 45–57.Google Scholar
  62. Jones, R. N., Rees, H., 1982: B chromosomes. — London, New York: Academic Press.Google Scholar
  63. Jorgensen, R. B., 1986: Relationships in the barley genus (Hordeum): an electrophoretic examination of proteins. — Hereditas104: 273–291.Google Scholar
  64. Kawahara, T., 1987: Identification of reciprocal translocation chromosome types in emmer wheats. III. Six chromosome types inTriticum dicoccoides. — Japan. J. Genet.62: 197–204.Google Scholar
  65. Kimber, G., 1984: Evolutionary relationships and their influence in plant breeding. — Stadler Genet. Symp.16: 281–294.Google Scholar
  66. Kimber, G., Feldman, M., 1987: Wild Wheat. Special report 353, College of Agriculture, University of Missouri, Columbia, April 1987.Google Scholar
  67. Kimura, M., 1985: The neutral theory of molecular evolution. — New Scientist, July 11: 41–44.Google Scholar
  68. Koebner, R. M. D., Appels, R., Shepherd, K. W., 1986: Rye heterochromatin II. Characterization of a derivative from chromosome IDS.IRL with a reduced amount of the major repeating sequence. — Canad. J. Genet. Cytol.28: 658–664.Google Scholar
  69. Linder, H. P., 1987: The evolutionary history of thePoales/Restionales. — A hypothesis. togenetic analysis of structural rearrangements in three varieties of common wheatTriticum aestivum. — Theor. Appl. Genet.73: 635–645.Google Scholar
  70. Langridge, J. B., 1987: Comparative evolution. — Cambridge University Press (submitted).Google Scholar
  71. Lapitan, N. L. V., Gill, B. S., Sears, R. G., 1987: Genomic and phylogenetic relationships among rye and perennial species in theTriticeae. — Crop Sci.27: 682–687.Google Scholar
  72. Lassner, M., Anderson, O., Dvorak, J., 1987: Inferences on evolution and intergenomic homogenization of ribosomal RNA gene spacers based on the molecular structure of a clone from the D-genome of bread wheat. — Genome29: 770–781.Google Scholar
  73. Lawrence, T., 1974: Inheritance of a variegated foliage character in Russian wild ryegrass,Elymus junceus Fisch. — Canad. J. Genet. Cytol.16: 467–468.Google Scholar
  74. Le Quesne, W. J., 1969: A method of selection of characters in numerical taxonomy. — Syst. Zool.18: 201–205.Google Scholar
  75. Lilienfeld, F. A., 1951: Genome-analysis inTriticum andAegilops. — Concluding review. — Cytologia16: 101–123.Google Scholar
  76. Linde-Laursen, I., von Bothmer, R., 1984: Giemsa C-banded karyotypes of two subspecies ofHordeum brevisubulatum from China. — Pl. Syst. Evol.145: 259–267.Google Scholar
  77. —, —, 1980: Giemsa C-banding in Asiatic taxa ofHordeum sectionStenostachys with notes on chromosome morphology. — Hereditas93: 234–254.Google Scholar
  78. Linder, H. P., 1987: The evolutionary history of thePoales/Restionales. — A hypothesis. — Kew Bull.42: 297–318.Google Scholar
  79. Löve, A., 1984: Conspectus of theTriticeae. — Feddes Repert.95: 425–521.Google Scholar
  80. Luckow, M., Pimentel, R. A., 1985: An empirical comparison of numerical Wagner computer programs. — Cladistics1: 47–66.Google Scholar
  81. Lundberg, J. G., 1972: Wagner networks and ancestors. — Syst. Zool.18: 1–32.Google Scholar
  82. Maddison, W. P., Donoghue, M. J., Maddison, D. R., 1984: Outgroup analysis and parsimony. — Syst. Zool.33: 83–103.Google Scholar
  83. Macfarlane, T. D., Watson, L., 1980: The circumscription ofPoaceae subfamilyPooideae, with notes on some controversial genera. — Taxon29: 645–666.Google Scholar
  84. —, —, 1982: The classification ofPoaceae subfamilyPooideae. — Taxon31: 178–203.Google Scholar
  85. May, C. E., Appels, R., 1987: Variability and genetics of spacer DNA sequences between the ribosomal-RNA genes of hexaploid wheat (Triticum aestivum). — Theor. Appl. Genet.74: 617–624.Google Scholar
  86. McIntyre, C. L., 1988: Variation at isozyme loci inTriticeae. — Pl. Syst. Evol.160: 123–142.Google Scholar
  87. Meacham, C. A., 1984: The role of hypothesized direction of characters in the estimation of evolutionary history. — Taxon33: 26–38.Google Scholar
  88. Melderis, A., 1953: Generic problems within the tribeHordeae. — Proc. 7th Int. Bot. Congr., 853–854.Google Scholar
  89. Mickevich, M. F., Mitter, C., 1981: Treating polymorphic characters in systematics: a phylogenetic treatment of electrophoretic data. — InFunk, V. A., Brooks, D. R., (Eds.): Advances in cladistics1. — Proc. 1st Meet. Willi Hennig Soc., pp. 45–48. — New York: Bot. Gard.Google Scholar
  90. Mitchell, L. E., Dennis, E. S., Peacock, W. J., 1988: Evidence for an insertion element in wheat. — Genome (submitted).Google Scholar
  91. Muller, J., 1981: Fossil pollen records of extant Angiosperms. — Bot. Rev.47: 1–142.Google Scholar
  92. Murai, K., Tsunewaki, K., 1987: Chloroplast genome evolution in the genusAvena. — Genetics116: 613–621.Google Scholar
  93. Nei, M., 1972: Genetic distance between populations. — Amer. Naturalist106: 283–292.Google Scholar
  94. —, 1978: Estimation of average heterozygosity and genetic distance from a small number of individuals. — Genetics89: 583–590.Google Scholar
  95. Nevers, P., Shepherd, N. S., Saedler, H., 1986: Plant transposable elements. — Adv. in Bot. Res.12: 103–203.Google Scholar
  96. Nevski, S. A., 1933: Agrostologitsheskie etiudi. IV. O systeme tribyHordeae. Flora i Systematika vysshchikh rastenii. — Tr. Bot. Inst. Akad. Nauk SSSR, Ser. 1, Fasc.1: 9–32.Google Scholar
  97. Nix, H. A., 1982: Environmental determinants of biography and evolution in Terra Australis. — InBarker, W. R., Greenslade, P. J. M., (Eds.) Evolution of the flora and fauna of arid Australia, pp. 47–66. — Sth. Australia: Peacock.Google Scholar
  98. Orr-Weaver, T., Spradling, A., 1987: Regulation ofDrosophila chorion gene amplification. — Stadler Genet. Symp.18 (in press).Google Scholar
  99. Palmer, J. D., 1986: Comparative organization of chloroplast genomes. — Ann. Rev. Genet.19: 325–354,Google Scholar
  100. Parker, P., Guthrie, G., 1985: A point mutation in the conserved hexanucleotide at a yeast 5′ splice junction uncouples recognition, cleavage and ligation. — Cell41: 107–118.Google Scholar
  101. Patterson, C., 1987: Molecules and morphology in evolution: conflict or compromise, pp. 1–21. — London: Cambridge University Press.Google Scholar
  102. Platnick, N. I., 1987: An empirical comparison of microcomputer parsimony programs. — Cladistics3: 117–140.Google Scholar
  103. Raven, P. H., Axelrod, D. I., 1974: Angiosperm biogeography and past continental movements. — Ann. Missouri Bot. Gard.61: 539–673.Google Scholar
  104. Reanney, D., 1984: Genetic noise in evolution. — Nature307: 318–319.Google Scholar
  105. Reddy, P., Appels, R., 1988: The measurement of variability in the structure of chromosomes from wheat and rye using molecular techniques. — Life Sciences series (in press).Google Scholar
  106. Reed, R., Maniatis, T., 1985: Intron sequences involved in lariat formation during pre-mRNA splicing. — Cell41: 95–105.Google Scholar
  107. Roberts, J. M., Buck, L. B., Axel, R., 1983: A structure for amplified DNA. — Cell33: 53–63.Google Scholar
  108. Rogers, J. S., 1972: Measures of genetic similarity and genetic distance. — Univ. Tex. Publ.7213: 145–153.Google Scholar
  109. —, 1986: Deriving phylogenetic trees from allele frequencies: a comparison of nine genetic distances. — Syst. Zool.35: 297–310.Google Scholar
  110. Runemark, H., Heneen, W. K., 1968:Elymus andAgropyron, a problem of generic delimitation. — Bot. Not.121: 51–79.Google Scholar
  111. Sakamoto, S., 1973: Patterns of phylogenetic differentiation in the tribeTriticeae. — Seiken Ziho24: 11–31.Google Scholar
  112. Schwarz-Sommer, Z., Gierl, A., Cuypers, H., Peterson, P. A., Saedler, H., 1985: Plant transposable elements generate the DNA sequence diversity needed in evolution. — EMBO J.4: 591–597.Google Scholar
  113. Scoles, G. J., Gill, B. S., Xin, Z.-Y., Clarke, B. C., McIntyre, C. L., Chapman, C., Appels, R., 1988: Frequent duplication and deletion events in the 5 S RNA genes and the associated spacer regions of theTriticeae. — Pl. Syst. Evol.160: 105–122.Google Scholar
  114. Sears, E. R., 1972: Reduced proximal crossing over in telocentric chromosomes of wheat. — Genet. Iber.24: 233–239.Google Scholar
  115. Sharp, P. J., Kreis, M., Shewry, P. R., Gale, M. D., 1987: Location of β-amylase sequences in wheat and its relatives. — Theor. Appl. Genet.75: 286–290.Google Scholar
  116. Simon, R., Starlinger, P., 1987: Transposable element Ds 2 ofZea mays influences polyadenylation and splice site selection. — Mol. Gen. Genet.209: 198–199.Google Scholar
  117. Smith, G. P., 1976: Evolution of repeated DNA sequences by unequal crossover. — Science191: 528–535.Google Scholar
  118. Sneath, P. H. A., Sokal, R. R., 1973: Numerical taxonomy. — San Francisco: Freeman.Google Scholar
  119. Stebbins, G. L., 1956a: Taxonomy and the evolution of genera, with special reference to the familyGramineae. — Evolution10: 235–245.Google Scholar
  120. —, 1956b: Cytogenetics and evolution of the grass family. — Amer. J. Bot.43: 890–905.Google Scholar
  121. —,Crampton, B., 1961: A suggested revision of the grass genera of temperate North America. Recent advances in botany from lectures and symposia presented to the 9th International Botanical Congress, Montreal 1959. Vol.1, pp. 133–145. — Toronto: University of Toronto Press.Google Scholar
  122. Stevens, P. F., 1980: Evolutionary polarity of character states. — Annual Rev. Ecol. Syst.11: 33–358.Google Scholar
  123. Stutz, H. C., 1972: On the origin of cultivated rye. — Amer. J. Bot.59: 59–70.Google Scholar
  124. Tanksley, S. D., 1987: Molecular mapping of plant chromosomes. — Stadler Genet. Symp.18 (in press).Google Scholar
  125. Tateno, Y., Nei, M., Tajima, F., 1982: Accuracy of estimated phylogenetic trees from molecular data. I. Distantly related species. — J. Mol. Evol.18: 387–404.Google Scholar
  126. Tzvelev, N. N., 1976: Tribe 3.Triticeae Dum. — In:Poaceae URSS, pp. 105–206. — Leningrad: Nauka.Google Scholar
  127. Vedel, F., Lebacq, P., Quetier, F., 1980: Cytoplasmic DNA variation and relationships in cereal genomes. — Theor. Appl. Gen.58: 219–224.Google Scholar
  128. Waring, R. B., Towner, P., Minter, S. J., Davies, R. W., 1986: Splice-site selection bySecale (Poaceae): an isozymatic study. — Pl. Syst. Evol.157: 33–47.Google Scholar
  129. Von Bothmer, R., Flink, J., Landström, T., 1986: Meiosis in interspecificHordeum hybrids. I. Diploid combinations. — Canad. J. Genet. Cytol.28: 525–535.Google Scholar
  130. —, —, —, 1987: Meiosis inHordeum interspecific hybrids II. Triploid hybrids. — Evol. Trends in PlantsI: 41–50.Google Scholar
  131. Walter, H., 1973: Vegetation of the earth. — New York Berlin Heidelberg: Springer.Google Scholar
  132. Wang, R. R.-C., 1985: Genome analysis ofThinopyrum bessarabicum andT. elongatum. — Canad. J. Genet. Cytol.27: 722–728.Google Scholar
  133. —, 1986a: Diploid perennial intergeneric hybrids in the tribeTriticeae. I.Agropyron cristatum ×Pseudoroegneria libanotica andCritesion violaceum ×Psathyrostachys juncea. — Crop Sci.26: 75–78.Google Scholar
  134. —, 1986b: Diploid perennial intergeneric hybrids in the tribeTriticeae. II. Hybrids ofThinopyrum elongatum andPseudoroegneria spicata andCritesion violaceum. — Biol. Zentralbl.105: 361–368.Google Scholar
  135. —, 1987: Diploid perennial intergeneric hybrids in the tribeTriticeae. III. Hybrids amongSecale montanum, Pseudoroegneria spicata andAgropyron mongolicum. — Genome29: 80–84.Google Scholar
  136. —,Hsiao, C., 1986: Differentiation of H genomes in the genusCritesion: evidence from synthetic hybrids involvingElymus andCritesion and one natural hybrid ofC. violaceum andC. bogdanii. — Canad. J. Genet. Cytol.28: 947–953.Google Scholar
  137. Waring, R. B., Towner, P., Minter, S. J., Davies, R. W., 1986: Splice-site selection by a self-splicing RNA ofTetrahymena. — Nature321: 133–139.Google Scholar
  138. Watrous, L., Wheeler, Q., 1981: The outgroup method of character analysis. — Syst. Zool.30: 1–11.Google Scholar
  139. Watson, L., Dallwitz, M. J., Johnston, C. R., 1986: Grass genera of the world: 728 detailed descriptions from an automated database. — Austral. J. Bot.34: 223–230.Google Scholar
  140. Willis, J. C., 1966: A dictionary of the flowering plants and ferns. 8. edn. — Cambridge: Cambridge University Press.Google Scholar
  141. Wright, T. R. F., MacIntyre, R., 1965: Heat stable and heat labile esterase-6F enzymes inDrosophila melanogaster produced by different est-6F alleles. — J. Elisha Mitchell Sci. Soc.81: 17–19.Google Scholar
  142. Xin, Z.-Y., Appels, R., 1987: Occurrence of rye (Secale cereale) 350-family DNA sequences inAgropyron and otherTriticeae. — Pl. Syst. Evol.160: 65–76.Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • J. G. West
    • 1
  • C. L. McIntyre
    • 1
  • R. Appels
    • 1
  1. 1.Division of Plant IndustryCSIROCanberraAustralia

Personalised recommendations