Archives of Orthopaedic and Trauma Surgery

, Volume 108, Issue 4, pp 195–202 | Cite as

Metaphyseal aspects of stapling

An experimental study in pigs
  • A. Karbowski
  • L. Camps
  • H. H. Matthiaß
Review Article


Blount stapling of the growth plate induced changes in the metaphyseal architecture, which progressed in correlation to the postoperative follow-up. The stereological investigations revealed a subtile reaction of the medial stapled tibial plate in a total of 37 domestic pigs (10 weeks old) during the postoperative follow-up (up to 17 weeks). Zone 1,380–1120 μm distal to the plate representing “bone modelling”, and zone 2, 1180–2360 μ distally representing “bone remodelling”, were investigated separately. The findings in zone 2 were very similar to zone 1 but were less extensive. The parameter most sensitive to stapling was the surface density; the trabecular distance showed parallel but less impressive findings. The specific surface and trabecular diameter changed with some delay. The last parameter to change was the volume density.


Public Health Specific Surface Surface Density Growth Plate Volume Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Althoff J, Quint P, Krefting ER, Höhling HJ (1982) Morphological studies on the epiphyseal growth plate combined with biochemical and X-ray microprobe analysis. Histochemistry 74:541–552PubMedGoogle Scholar
  2. 2.
    Blount WP, Clarke GR (1949) Control of bone growth by epiphyseal stapling. J Bone Joint Surg [Am] 31:464–478Google Scholar
  3. 3.
    Bonnel F, Peruchon E, Baldet P, Dimeglio A, Rabischong P (1983) Effects of compression on growth plates in the rabbit. Acta Orthop Scand 54:730–733PubMedGoogle Scholar
  4. 4.
    Brighton CT (1978) Structure and function of the growth plate. Clin Orthop 136:22–32PubMedGoogle Scholar
  5. 5.
    Camps L (1987) Die Blount'sche Klammerung im Tierexpcriment. Knochenwachstum, Histopathologie, Morphometrie und Stereologie. Dissertation, Universität MünsterGoogle Scholar
  6. 6.
    Christensen NO (1973) Growth arrest by stapling. Acta Orthop Scand [Suppl] 151:103Google Scholar
  7. 7.
    Delling G (1979) Morphometrie des Knochengewebes. Verh Dtsch Ges Innere Med 85:225–239Google Scholar
  8. 8.
    Frost HM (1980) An introduction to bone remodeling physiology. In: Kuhlencordt F, Bartelheimer H (eds) Handbuch der inneren Medizin, Vol 6, Pt 1A. Springer, Berlin Heidelberg New York, pp 81–101Google Scholar
  9. 9.
    Fung YC (1981) Biomechanics. Springer, Berlin Heidelberg New YorkGoogle Scholar
  10. 10.
    Goff CW (1967) Der Einfluß der Epiphysenklammerung auf das Wachstum des Knochens im Kindesalter. Verh Dtsch Orthop Ges Z Orthop [Suppl] 103:184–188Google Scholar
  11. 11.
    Goff CW (1967) Histologic arrangements from biopsies of epiphyseal plates of children before and after stapling. Am J Orthop 12:87–89Google Scholar
  12. 12.
    Hennig A (1956) Bestimmung der Oberfläche beliebig geformter Körper mit besonderer Anwendung auf Körperhaufen immikroskopischen Bereich. Mikroskopie 11:1–20PubMedGoogle Scholar
  13. 13.
    Hert J, Pribylova E, Liskova M (1972) Reaction of bone to mechanical stimuli. III. Microstructure of compact bone of rabbit tibia after intermittent loading. Acta Anat 82:218–230PubMedGoogle Scholar
  14. 14.
    Herwig J, Schmidt A, Matthiaß HH, Kleemann H, Buddecke E (1987) Biochemical events during stapling of the proximal tibial epiphyseal plate in pigs. Clin Orthop 218:283–289PubMedGoogle Scholar
  15. 15.
    Karbowski A, Camps L (1985) Morphologische, morphometrische und stereologische Aspekte einseitiger Blount'scher Klammerung der Wachstumsfuge im Tierexperiment. Z Orthop 123:403–408PubMedGoogle Scholar
  16. 16.
    Karbowski A, Camps L, Matthiaß HH (1989) Histopathological features of unilateral stapling in animal experiment (in press)Google Scholar
  17. 17.
    Kimmel DB, Jee WSS (1980) Bone kinetics during longitudinal bone growth in rat. Calc Tiss Int 32:123–133Google Scholar
  18. 18.
    Krompecher S (1937) Die Knochenbildung. Fischer, JenaGoogle Scholar
  19. 19.
    Kummer S (1978) Mechanische Beanspruchung und funktionelle Anpassung des Knochens. Verh Anat Ges 72:21–46PubMedGoogle Scholar
  20. 20.
    Matthiaß HH, Schmidt A, Kleemann H, Oosterhoff D, Höhling H (1983) Experimentelle Untersuchungen zur Wirkung der Blount'schen Klammerung. Z Orthop 121:356–357Google Scholar
  21. 21.
    Pauwels F (1980) Biomechanics of the locomotor apparatus. Springer, Berlin Heidelberg New YorkGoogle Scholar
  22. 22.
    Roux W (1985) Beschreibung und Erläuterung einer knöchernen Kniegelenksankylose. In: Roux W (ed) Gesammelte Abhandlungen über Entwicklungsmechanik der Organismen. Engelmann, Leipzig, pp 662–722Google Scholar
  23. 23.
    Schenk R (1980) Basic histomorphology and physiology of skeletal growth In: Weber BG, Brunner CH, Freuler F (eds) Treatment of fractures in children and adolescents. Springer, Berlin Heidelberg New York, pp 3–19Google Scholar
  24. 24.
    Schwartz MP, Recker RR (1981) Comparison of surface density and volume of human iliac trabecular bone measured directly and by applied stereology. Calc Tiss Int 33: 561–565Google Scholar
  25. 25.
    Siffert RS (1956) The effect of staples and longitudinal wires on epiphyseal growth. J Bone Joint Surg [Am] 38:1077–1088Google Scholar
  26. 26.
    Trueta J, Trias A (1961) The vascular contribution to osteogenesis. IV: The effect of pressure upon the epiphyseal cartilage of the rabbit. J Bone Joint Surg [Br] 43:800–813Google Scholar
  27. 27.
    Weibel ER (1980, 1981) Stereological methods. Academic Press, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • A. Karbowski
    • 1
  • L. Camps
    • 1
  • H. H. Matthiaß
    • 1
  1. 1.Department of Orthopedic SurgeryUniversity of MünsterMünsterFederal Republic of Germany

Personalised recommendations