Plant Systematics and Evolution

, Volume 157, Issue 3–4, pp 219–245 | Cite as

Sexual tetraploid and apomictic pentaploid populations ofHieracium pilosella (Compositae)

  • T. W. J. Gadella


Five species are recognized inHieracium subgen.Pilosella sect.PilosellinaFries. Four are diploid (2x, 2n = 18), one (H. pilosella L.) is highly variable morphologically and cytologically (from 2x to 10x), in its mode of reproduction (self-incompatibility, agamospermy, amphimixis, apo-amphimixis) and in its hybridization pattern. A part of this huge agamic complex was analysed by comparing sexual 4x and apomictic 5x plants (crossing and germination experiments, measurements of vegetative reproduction by stolons etc.). In the experimental garden apomictic 5x produced more stolons than the sexual 4x plants and the total length of the stolons per rosette was greater. However, in nature, the competitive potential of the sexual plants seems to be higher, presumably as a result of the higher mortality of ramets in 5x. Sexual 4x plants often grow in dense and grazed grass vegetation, whereas 5x apomicts often occur in dunes with patchy vegetation. Apomicts produce more capitula per rosette, and sexual rosettes form only about 60% of the number of viable achenes as compared to apomictic ones. Therefore, apomicts appear to be characterized by a greater colonizing ability than sexual plants. Apomictic plants produce equal numbers of viable achenes under conditions of both open pollination and isolation. Sexual plants do not form any viable achenes after isolation and produce a somewhat lower percentage of achenes after open pollination than do apomictics. 5xreproduce exclusively apomictically. Apo-amphimixis was never observed in pentaploids and only very rarely in tetraploids. Addition hybrids are very rare. The cross sexual 4x × apomictic 5x failed in 70% of the attempts, but the recombination of genomes carrying genes for apomixis is possible and results in apomictic 4x and sexual 5x, both with a reduced number of viable achenes. In nature sexual and apomictic plants may occur in close proximity. In such cases the germination rate of the achenes of 4x and 5x is lower; this may indicate that apomictic plants fertilize sexual plants in nature (unidirectional gene-flow). 5x plants form euploid gametes carrying two or three genomes. The results of the crossing experiments can be explained in terms ofNogler's theory of monogenic inheritance of apospory.

Key words

Angiosperms Compositae Hieracium sect Pilosellina Mode of reproduction cytology crossing and germination experiments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asker, S., 1977: Pseudogamy, hybridization and evolution inPotentilla. — Hereditas87, 179–184.Google Scholar
  2. —, 1980: Gametophytic apomixis: elements and genetic regulation. — Hereditas93, 277–293.Google Scholar
  3. Babcock, E. B., Stebbins, G. L., 1938: The American species ofCrepis: their relationships and distribution as affected by polyploidy and apomixis. — Carnegie Inst. Wash. Publ.504, 1–200.Google Scholar
  4. Bayer, R. J., Stebbins, G. L., 1983: Distribution of sexual and apomictic populations ofAntennaria parlinii. — Evolution37 (3, 555–561.Google Scholar
  5. Burton, G. W., Forbes, I., 1960: The genetics and manipulation of obligate apomixis in common Bahia grass (Paspalum notatum Flugge). — Int. Grassl. Congr. Proc.8, 66–71.Google Scholar
  6. Christoff, M., 1942: Die genetische Grundlage der apomiktischen Fortpflanzung beiHieracium aurantiacum L. — Zeitschr. f. Indukt. Abstamm. Vererbungslehre80, 103–125.Google Scholar
  7. Danser, B. H., 1929: Über die Begriffe Komparium, Kommiskuum und Konvivium, und über die Entstehungsweise der Konvivien. — GeneticaXI, 399–450.Google Scholar
  8. Delcourt, F., 1972: Contribution à l'étude cytotaxonomique deHieracium pilosella L. — Bull. Soc. Bot. France119, 287–302.Google Scholar
  9. Dmitrieva, S. A., Parfenov, V. I., Schvec, I. V., 1977: The karyologic characterization of some species of the Belorussian flora. — Vesci Akad. Navuk Belarusk SSR, Ser. Bijal. Sel'skagasp. Navuk19, 82–91.Google Scholar
  10. Doing, H., 1983: In:Dijkema, K. S., Wolff, W. J., (Eds.): Flora and Vegetation of the Wadden Sea Islands and Coastal Areas. Report 9 and appendix, 413 pp. — Rotterdam: A. A. Balkema.Google Scholar
  11. Esau, K., 1946: Morphology of reproduction in guayule and certain other species ofParthenium. — Hilgardia17, 61–101.Google Scholar
  12. Fagerlind, F., 1937: Embryologische, zytologische und bestäubungsexperimentelle Studien in der FamilieRubiaceae nebst Bemerkungen über einige Polyploiditätsprobleme. — Acta Horti Berg.11, 195–470.Google Scholar
  13. Favarger, Cl., 1953: Notes de caryologie alpine II. — Bull. Soc. Neuchât. Sci. Nat.76, 133–169.Google Scholar
  14. —, 1965: Notes de caryologie alpine IV. — Bull. Soc. Neuchât. Sci. Nat. ser. 3,88, 5–60.Google Scholar
  15. Fernandes, A., Queiros, M., 1977: Contribution à la connaissance cytotaxinomique desSpermatophyta du Portugal, IICompositae. — Bol. Soc. Brot.45, 5–122.Google Scholar
  16. Gadella, Th. W. J., Kliphuis, E., 1968: Enige opmerkingen overHieracium pilosella L. in Nederland. — Gorteria4 (2, 17–26.Google Scholar
  17. —, 1972: Biosystematic studies inHieracium pilosella L. and some related species of the subgenusPilosella. — Bot. Notiser125, 361–369.Google Scholar
  18. —, 1982: Cytology and reproduction ofHieracium pilosella L. and some related diploid species. — Acta Bot. Neerl.31, 140–141.Google Scholar
  19. —, 1983: Some notes on the determination of the mode of reproduction in higher plants. — Proc. Kon. Ned. Acad. Wet. ser. C.86 (2, 155–166.Google Scholar
  20. —, 1984: Cytology and the mode of reproduction of some taxa ofHieracium subgenusPilosella. — Proc. Kon. Ned. Acad. Wet. ser. C87 (4, 387–399.Google Scholar
  21. Gentscheff, G., 1937: Zytologische und embryologische Studien über einigeHieracium-Arten. — Planta27, 165–195.Google Scholar
  22. Harlan, J. R., De Wet, J. M. J., 1975: InWinge, Ö., & Prayer, A.: The origins of polyploidy. — Bot. Rev.41, 361–390.Google Scholar
  23. Hess, H. E., Landolt, E., Hirzel, R., 1972:Hieracium. — In: Flora der Schweiz3, 657–668. Basel, Stuttgart: Birkhäuser.Google Scholar
  24. Jenniskens, M.-J. P. J., 1984a: Aspects of the Biosystematics ofTaraxacum Sect.Taraxacum. 192 pp. — Thesis University of Amsterdam.Google Scholar
  25. —, 1984b: Self-compatibility in diploid, sexual plants ofTaraxacum sect.Taraxacum. — Acta Bot. Neerl.33 (1, 71–80.Google Scholar
  26. Kliphuis, E., 1970: Cytotaxonomic notes on someGalium species:Galium sylvaticum L.,Galium aristatum L. andGalium schultesii Vest. — Proc. Kon. Ned. Acad. Wet. Ser. C73 (3, 271–283.Google Scholar
  27. Liljefors, A., 1955: Cytological studies inSorbus. — Acta Hort. Berg.17, 47–113.Google Scholar
  28. Levin, D. A., 1975: Pest pressure and recombination systems in plants. — Amer. Naturalist109, 437–451.Google Scholar
  29. Makepeace, W., 1981: Polymorphism and the chromosomal number ofHieracium pilosella L. in New Zealand. — New Zealand J. Bot.19, 255–258.Google Scholar
  30. Małecka, J., 1973: Problems of the mode of reproduction in microspecies ofTaraxacum sect.Palustria Dahlstedt. — Acta Biol. Cracov., ser. Bot.,16, 37–84.Google Scholar
  31. Merxmüller, H., 1975: Diploide Hieracien. — Anales Bot. Ant. José Canvanilles32 (2, 189–196.Google Scholar
  32. Michaels, H. J., Bazzaz, F. A., 1986: Resource allocation and demography of sexual and apomicticAntennaria parlinii. — Ecology67 (1, 27–36.Google Scholar
  33. Müntzing, A., 1940: Further studies on apomixis and sexuality inPoa. — Hereditas26, 115–190.Google Scholar
  34. Nägeli, C. von, Peter, A., 1885: Die Hieracien Mittel-Europas. Monographische Bearbeitung der Piloselloiden mit besonderer Berücksichtigung der mitteleuropäischen Sippen. — München.Google Scholar
  35. Natarajan, G., 1981: In: I.O.P.B. chromosome number reports LXXII. — Taxon30, 698–699.Google Scholar
  36. Nogler, G. A., 1984: Gametophytic Apomixis. — InJohri, B. M. (Ed.): Embryology of Angiosperms, 475–518. — Berlin, Heidelberg: Springer.Google Scholar
  37. Ostenfeld, C. H., 1910: Further studies on the apogamy and hybridization of the Hieracia. — Z. Indukt. Abstamm. und Vererbungslehre3, 241–285.Google Scholar
  38. Rosenberg, O., 1907: Cytological studies on the apogamy inHieracium. — Bot. Tidsskr.28, 143–170.Google Scholar
  39. —, 1930: Apogamie und Parthenogenesis bei Pflanzen. — InBauer, E., Hortmann, M., (Eds.): Handbuch der Vererbungswiss. II (12). — Berlin: Borntraeger.Google Scholar
  40. Rutishauser, A., 1948: Pseudogamie und Polymorphie in der GattungPotentilla. — Arch. Julius Klaus Stift. Vererbungsforschung23, 267–424.Google Scholar
  41. —, 1967: Fortpflanzungsmodus und Meiose apomiktischer Blütenpflanzen. — InAlfert, M. & al., (Eds.): Protoplasmatologia VI/F/3. — Vienna, New York: Springer.Google Scholar
  42. Scannerini, S., 1971: In: Numeri cromosomici per la flora Italiana. — Inf. Bot. Italiano3, 47–94.Google Scholar
  43. Sell, P. D., West, C., 1976:Hieracium L. — InTutin, T. G. & al. (Eds.): Flora Europaea4, 358–410. — Cambridge: University Press.Google Scholar
  44. Skalińska, M., 1967: Cytological analysis of someHieracium species, subgen.Pilosella, from mountains of southern Poland. — Acta Biol. Cracov.10, 127–141.Google Scholar
  45. —, 1969: Apomixis inHieracium aurantiacum L. — Genet. Polon.10, 91–93.Google Scholar
  46. —, 1971: Experimental and embryological studies inHieracium aurantiacum L. — Acta Biol. Cracov.14, 139–152.Google Scholar
  47. Skalińska, M., 1973: Further studies in facultative apomixis ofHieracium aurantiacum L. — Acta Biol. Cracov. ser. Bot.16, 121–133.Google Scholar
  48. —, 1976: Cytological diversity in the progeny of octoploid facultative apomicts ofHieracium aurantiacum. — Acta Biol. Cracov.19, 39–46.Google Scholar
  49. Soest, J. L. van, 1927: Het geslachtHieracium in Nederland III. — Nederl. Kruidk. Arch.37, 171–222.Google Scholar
  50. —, 1929: Het geslachtHieracium in Nederland IV. — Nederl. Kruidk. Arch.39, 103–141.Google Scholar
  51. Sterk, A., Groenhart, M. C., Mooren, F. J. A., 1983: Aspects of the ecology of some microspecies ofTaraxacum in the Netherlands. — Acta Bot. Neerl.32 (5/6, 385–415.Google Scholar
  52. Strid, A., Franzen, R., 1981: In: I.O.P.B. chromosome number reports LXXIII. — Taxon30, 829–842.Google Scholar
  53. Taliaferro, C. M., Bashaw, E. C., 1966: Inheritance and control of obligate apomixis in breeding buffelgrass,Pennisetum ciliare. — Crop Sci.6, 473–476.Google Scholar
  54. Turesson, G., Turesson, B., 1960: Experimental studies inHieracium pilosella L. I. Reproduction, chromosome number and distribution. — Hereditas46, 717–736.Google Scholar
  55. Turesson, B., 1972: Experimental studies inHieracium pilosella. L. II. Taxonomy and differentiation. — Bot. Notiser125, 223–240.Google Scholar
  56. Uhriková, A., Feráková, V., 1977: In: I.O.P.B. chromosome number reports LVI. — Taxon26, 257–274.Google Scholar
  57. —, 1980: In: I.O.P.B. chromosome number reports LXIX. — Taxon29, 729.Google Scholar
  58. Urbanska, K., 1974: L'agamospermie, système de reproduction important dans la spéciation des Angiospermes. — Bull. Soc. Bot. France121, 329–346.Google Scholar
  59. Williams, G. C., 1975: Sex and evolution. — Princeton, N.J. (U.S.A.): Princeton Univ. Press.Google Scholar
  60. Zahn, K. H. 1923:Hieracium. — In Engler, A., (Ed.): Das PflanzenreichIV/280: 1147–1705.Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • T. W. J. Gadella
    • 1
  1. 1.Vakgroep Populatie en Evolutiebiologie, Department of BiosystematicsState University Utrecht, Transitorium IIIUtrechtThe Netherlands

Personalised recommendations