Skip to main content
Log in

The evolution of self-fertility inCrepis tectorum (Asteraceae)

  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The extent of self-fertility was examined in 16 populations ofCrepis tectorum. A hypothesis that a weedy habit favours autogamy was only partly supported. Low levels of self-fertility characterized non-weedy populations from calcareous grasslands (“alvars”) on the Baltic island in Öland. By contrast, plants in nearly all weed populations studied were more or less self-fertile. However, the trend towards autogamy may have occurred independently of the trend towards a weedy habit, as shown by moderately to high levels of self-fertility in alvar populations from two other Baltic islands. In the weed group, there was a tendency for plants from two field populations to be more autogamous than plants from more “ruderal” habitats. There was an association between self-fertility and small, inconspicious heads in the alvar group but the association was weaker when weed populations were also considered. The relatively wide heads characterizing the ruderal weed populations may, at least partly, be an indirect effect of increases in overall plant size and/or in the size of the fruit associated with each flower.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersson, S., 1988: Limiting factors on seed production inCrepis tectorum ssp.pumila. — Acta Phytogeogr. Suecica76: 9–20.

    Google Scholar 

  • —, 1989: Variation in heteroblastic succession among populations ofCrepis tectorum. — Nordic J. Bot.8: 565–573.

    Google Scholar 

  • Babcock, E. B., 1947: The genusCrepis 1–2. — Berkeley, Los Angeles: University of California Press.

    Google Scholar 

  • Baker, H. G., 1955: Self-compatibility and establishment after “long-distance” dispersal. — Evolution9: 347–349.

    Google Scholar 

  • —, 1965: Characteristics and modes of origin of weeds. — InBaker, H. G., Stebbins, G. L., (Eds.): Genetics of colonizing species, pp. 147–172. — New York: Academic Press.

    Google Scholar 

  • —, 1967: The evolution of weedy taxa in theEupatorium microstemon species aggregate. — Taxon16: 293–300.

    Google Scholar 

  • —, 1974: The evolution of weeds. — Ann. Rev. Ecol. Syst.5: 1–24.

    Google Scholar 

  • Bengtsson, K., Prentice, H. C., Rosèn, E., Moberg, R., Sjögren, E., 1988: The dry alvar grasslands of Öland: ecological amplitudes of plant species in relation to vegetation composition. — Acta Phytogeogr. Suecica76: 21–46.

    Google Scholar 

  • Berglund, B. E., 1966: Late-Quaternary vegetation in eastern Blekinge, southeastern Sweden. 1. Late-Glacial time. — Opera Bot.12: 1–180.

    Google Scholar 

  • Gibbs, P. E., Milne, C., Carillo, M. V., 1975: Correlation between the breeding system and recombination index in five species ofSenecio. — New Phytol.75: 619–626.

    Google Scholar 

  • Giles, B. E., Bengtsson, B. O., 1988: Variation in anther size in wild barley (Hordeum vulgare ssp.spontaneum). — Hereditas108: 199–205.

    Google Scholar 

  • Gottlieb, L. D., 1984: Genetics and morphological evolution in plants. — Amer. Naturalist123: 681–709.

    Google Scholar 

  • Harding, J., Mankinen, C. B., Elliott, M. H., 1974: Genetics ofLupinus. 7. Outcrossing, autofertility, and variability in natural populations of thenanus group. — Taxon23: 729–738.

    Google Scholar 

  • Horovitz, A., Harding, J., 1972: Genetics ofLupinus. 5. Intraspecific variability for reproductive traits inLupinus nanus. — Bot. Gaz.133: 155–165.

    Google Scholar 

  • Hughes, M. B., Babcock, E. B., 1950: Self-incompatibility inCrepis foetida L. subsp.rhoeadifolia. — Genetics35: 570–588.

    PubMed  Google Scholar 

  • Königsson, L. K., 1968: The Holocene history of the Great Alvar of Öland. — Acta Phytogeogr. Suecica55: 1–172.

    Google Scholar 

  • Lande, R., Schemske, D. W., 1985: The evolution of self-fertilization and inbreeding depression in plants. 1. Genetic models. — Evolution39: 24–40.

    Google Scholar 

  • Lefebrve, C., 1970: Self-fertility in maritime and zinc mine populations ofArmeria maritima (Mill.)Willd. — Evolution24: 571–577.

    Google Scholar 

  • Lloyd, D. G., 1965: Evolution of self-compatibility and racial differentiation inLeavenworthia (Cruciferae). — Contr. Gray Herb.195: 1–134.

    Google Scholar 

  • —, 1979: Some reproductive factors affecting the selection of self-fertilization in plants. — Amer. Naturalist113: 67–79.

    Google Scholar 

  • Moore, D. M., Lewis, H., 1965: The evolution of self-pollination inClarkia xantiana. — Evolution19: 104–114.

    Google Scholar 

  • Mulligan, G. A., Findlay, J. N., 1970: Reproductive systems and colonization in Canadian weeds. — Canad. J. Bot.48: 859–860.

    Google Scholar 

  • Ornduff, R., 1969: Reproductive biology in relation to systematics. — Taxon18: 121–133.

    Google Scholar 

  • Pettersson, B., 1958: Dynamik och konstans i Gotlands flora och vegetation. — Acta Phytogeogr. Suecica40: 1–288.

    Google Scholar 

  • —, 1965: Gotland and Öland. Two limestone islands compared. — Acta Phytogeogr. Suecica50: 131–140.

    Google Scholar 

  • Primack, R. B., 1987: Relationships among flowers, fruits and seeds. — Ann. Rev. Ecol. Syst.18: 409–430.

    Google Scholar 

  • Richards, A. J., 1986: Plant breeding systems. — London: Allen & Unwin.

    Google Scholar 

  • Rick, C. M., Fobes, J. F., Tanksley, S. D., 1979: Evolution of mating systems inLycopersicon hirsutum as deduced from genetic variation in electrophoretic and morphological characters. — Pl. Syst. Evol.132: 279–298.

    Google Scholar 

  • Schoen, D. J., 1977: Morphological, phenological, and pollen-distribution evidence of autogamy and xenogamy inGilia achilleifolia (Polemoniaceae). — Syst. Bot.2: 280–286.

    Google Scholar 

  • —, 1982: The breeding system ofGilia achilleifolia: variation in floral characteristics and outcrossing rate. — Evolution36: 352–360.

    Google Scholar 

  • Solbrig, O. T., 1967: Some aspects ofCompositae of evolutionary interest. — Taxon16: 304–307.

    Google Scholar 

  • Stebbins, G. L., 1957: Self-fertilization and population variability in the higher plants. — Amer. Naturalist91: 337–354.

    Google Scholar 

  • Sterner, R., 1938: Flora der Insel Öland. — Acta Phytogeogr. Suecica9: 1–169.

    Google Scholar 

  • Strid, A., 1970: Studies in the Aegean Flora. 16. Biosystematics of theNigella arvensis complex. — Opera Bot.28: 1–169.

    Google Scholar 

  • Thomas, S. M., Murray, B. G., 1981: Breeding systems and hybridization inPetrorhagia sect.Kohlrauchia (Caryophyllaceae). — Pl. Syst. Evol.139: 77–94.

    Google Scholar 

  • Wyatt, R., 1984: The evolution of self-pollination in granite outcrop species ofArenaria (Caryophyllaceae). 1. Morphological correlates. — Evolution38: 804–816.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, S. The evolution of self-fertility inCrepis tectorum (Asteraceae). Pl Syst Evol 168, 227–236 (1989). https://doi.org/10.1007/BF00936101

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00936101

Key words

Navigation