Applied physics

, Volume 7, Issue 3, pp 215–226 | Cite as

Pulsed laser damage of proustite

  • B. Luther-Davies
  • R. C. Smith
  • R. Wyatt
Contributed Papers


Pulsed laser damage thresholds have been measured for proustite (Ag3 As S3) as the wavelengths 0.694, 1.065, 1.32 and 10.6 μm. The damage thresholds have been found to vary with both the wavelength and duration of the irradiating pulse. At 1.065 μm damage thresholds are 0.38 J/cm2 for pulses of duration <50 ns whilst for durations >50 ns a value of 7 MW/cm2 is appropriate.

The results suggest that damage is initiated by absorbing inclusions approximately 0.6 μm in diameter embedded within the crystals. These inclusions are heated by an incident pulse to cause catastrophic damage of both the surface and interior of an irradiated sample. A model has been developed to enable a study of the thermal behaviour of inclusions irradiated by laser pulses with Gaussian time-dependence to be made.


Damage Threshold Metallic Inclusion Laser Damage Threshold Inclusion Radius Dielectric Inclusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.Bardsley, P.H.Davies, M.V.Hobden, K.F.Hulme, O.Jones, W.Pomeroy, J.Warner: Opto-Electronics1, 29 (1969)CrossRefGoogle Scholar
  2. 2.
    D.C.Hanna, R.C.Smith, C.R.Stanley: Optics Comm.4, 300 (1971)CrossRefADSGoogle Scholar
  3. 3.
    C.D.Decker, F.K.Tittel: Appl. Phys. Lett.22, 411 (1973)CrossRefGoogle Scholar
  4. 4.
    J.Warner: Appl. Phys. Lett.12, 222 (1968)CrossRefGoogle Scholar
  5. 5.
    D.Y.Tseng: Appl. Phys. Lett.24, 134 (1974)CrossRefGoogle Scholar
  6. 6.
    E.O.Ammann, J.M.Yarborough: Appl. Phys. Lett.17, 233 (1970)CrossRefGoogle Scholar
  7. 7.
    D.C.Hanna, B.Luther-Davies, R.C.Smith: Appl. Phys. Lett.22, 440 (1973)CrossRefGoogle Scholar
  8. 8.
    D.C.hanna, B.Luther-Davies, H.N.Rutt, R.C.Smith, C.R.Stanley: IEEE J. Quant. Electron. QE-8, 317 (1972)CrossRefGoogle Scholar
  9. 9.
    R.L.Herbst, R.L.Byer: Appl. Phys. Lett.19, 527 (1971)CrossRefGoogle Scholar
  10. 10.
    H.Kildal, J.C.Mikkelsen: Optics Comm.9, 315 (1973)CrossRefADSGoogle Scholar
  11. 11.
    Wm.D.Fountain, L.M. Osterink, G.A. Massey: U.S. National Bureau of Standards Special Publication356 (1971)Google Scholar
  12. 12.
    C.R.Giuliano, D.Y.Tseng: Proc. Symp. Damage in Laser Materials, Boulder, Colorado (1973)Google Scholar
  13. 13.
    D.C.Hanna: Optics and Laser Tech.2, 122 (1970)CrossRefGoogle Scholar
  14. 14.
    C.R.Giuliano: Hughes Research Laboratories, semi-annual technical report, AFCRL-TR-73-0099 (1973)Google Scholar
  15. 15.
    G.W.Flynn, W.J.A. Powell, G.C.W.Jenkins: Royal Radar Establishment, Technical Note749 (1970)Google Scholar
  16. 16.
    M.D.Crisp: IEEE J. Quant. Electron. QE-10, 57 (1974)CrossRefGoogle Scholar
  17. 17.
    R.W.Hopper, D.R.Uhlman: J. Appl. Phys.41, 4023 (1970)CrossRefADSGoogle Scholar
  18. 18.
    E.S.Bliss: Opto-Electronics3, 99 (1971)CrossRefGoogle Scholar
  19. 19.
    M.Sparks, C.J.Duthler: J. Appl. Phys.44, 3038 (1973)CrossRefADSGoogle Scholar
  20. 20.
    N.Bloembergen: Appl. Opt.12, 661 (1973)ADSGoogle Scholar
  21. 21.
    Yu.K.Danileiko, A.A.Manenkov, V.S.Nechitailo, A.M.Prokhorov, V.Ya.Khaimov-Mal'kov: Sov. Phys. JETP36, 541 (1973)Google Scholar
  22. 22.
    A.Turner: University of Southampton (private communication)Google Scholar
  23. 23.
    L.R.Ingersoll, O.J.Zobel, A.C.Ingersoll:Heat Conduction (McGraw-Hill, New York 1957)Google Scholar
  24. 24.
    H.C.Van de Hulst:Light Scattering by Small Particles (Wiley & Sons, New York 1957)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • B. Luther-Davies
    • 1
  • R. C. Smith
    • 1
  • R. Wyatt
    • 1
  1. 1.Department of ElectronicsUniversity of SouthamptonSouthamptonUK

Personalised recommendations