Applied physics

, Volume 18, Issue 1, pp 53–62 | Cite as

An analysis of optical waveguide tapers

  • T. K. Lim
  • B. K. Garside
  • J. P. Marton
Contributed Papers

Abstract

The characteristics of slab waveguide tapers with finite-thickness cladding are investigated by approximating the tapered section as a series of uniform five-layer waveguides with successive changes in the core and cladding thickness. The behaviour of multimode coupling and transmission characteristics for typical tapers are studied in detail by computer simulation, employing parameter values appropriate for practical systems. Strong coupling and efficient conversion between core and cladding modes are demonstrated. In addition, it is shown that for tapers of moderate slopes, the nearest-neighbour coupling approximation is quite adequate for the calculation of the individual mode amplitudes. For steeper tapers, however, additional neighbouring modes have to be taken into account, and the modal energy tends to spread further towards the higher-order modes. It is also demonstrated that relatively large step-size can be used in the iterative numerical calculations. This, in conjunction with the choice of an appropriate coupling scheme (e.g., the nearest-neighbour approximation for mild tapers), makes it possible to reduce the cost of computer simulation. The relevance of the present analysis to fiber tapers is also discussed.

PACS

42.82 42.10 42.80 85.60 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.Ozeki, B.S.Kawasaki: Elect. Lett.12, 607–608 (1976)Google Scholar
  2. 2.
    T.Ozeki, B.S.Kawasaki: Appl. Phys. Lett.28, 528–529 (1976)CrossRefADSGoogle Scholar
  3. 3.
    B.S.Kawasaki, K.O.Hill: Appl. Opt.16, 1794–1795 (1977)ADSGoogle Scholar
  4. 4.
    K.O.Hill, B.S.Kawasaki, D.C.Johnson: Appl. Phys. Lett.31, 740–742 (1977)CrossRefADSGoogle Scholar
  5. 5.
    T.Ozeki, T.Ito, T.Tamura: Appl. Phys. Lett.26, 386–388 (1975)CrossRefADSGoogle Scholar
  6. 6.
    See, for example, N.S.Kapany:Fiber Optics (Academic Press, New York 1967) pp. 18–22Google Scholar
  7. 6a.
    W.B.Allen:Fiber Optics, Theory and Practice (Plenum Press, London 1973) pp. 21–25Google Scholar
  8. 7.
    T.Ozeki, B.S.Kawasaki: Elect. Lett.12, 407–408 (1976)Google Scholar
  9. 8.
    D.Gloge: IEEE Trans. MTT-23, 106–120 (1975)CrossRefADSGoogle Scholar
  10. 9.
    See, for example, D.Marcuse:Light Transmission Optics (Van Nostrand Reinhold, New York 1972)Google Scholar
  11. 10.
    D.Marcuse: Bell Syst. Tech. J.49, 273–290 (1970)Google Scholar
  12. 11.
    H.Yajima:Proc. Symp. Optical and Acoustical Micro-Electronics (Polytechnic Press, New York 1974) pp. 339–358Google Scholar
  13. 12.
    W.K.Burns, A.F.Milton: IEEE J. QE-11, 32–39 (1975)CrossRefGoogle Scholar
  14. 13.
    A.R.Nelson: Appl. Opt.14, 3012–3015 (1975)ADSGoogle Scholar
  15. 14.
    A.F.Milton, W.K.Burns: IEEE J. QE-13, 828–835 (1977)CrossRefGoogle Scholar
  16. 15.
    D.Marcuse: Appl. Opt.17, 755–762 and 763–768 (1978)ADSCrossRefGoogle Scholar
  17. 16.
    B.K.Garside, T.K.Lim, J.P.Marton: Appl. Opt. (to be published)Google Scholar
  18. 17.
    R.K.Winn, J.H.Harris: IEEE Trans. MTT-23, 92–97 (1975)CrossRefGoogle Scholar
  19. 18.
    A.W.Snyder: IEEE Trans. MTT-18, 383–392 (1970)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • T. K. Lim
    • 1
  • B. K. Garside
    • 2
  • J. P. Marton
    • 3
    • 4
  1. 1.Dale Electronics LimitedLondonCanada
  2. 2.Department of Engineering PhysicsMcMaster UniversityHamiltonCanada
  3. 3.Dale Electronics LimitedLondonCanada
  4. 4.Department of Engineering PhysicsMcMaster UniversityHamiltonCanada

Personalised recommendations