The limiting Lagrangian as a consequence of Helly's theorem

  • J. M. Borwein
Contributed Papers

Abstract

The perturbational Lagrangian equation established by Jeroslow in convex semi-infinite programming is derived from Helly's theorem and some prior results on one-dimensional perturbations of convex programs.

Key Words

Convex semi-infinite programming limiting Lagrangians Helly's theorem recession directions affine minorants moment cones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Duffin, R. J.,Convex Analysis Treated by Linear Programming, Mathematical Programming, Vol. 4, pp. 125–143, 1973.Google Scholar
  2. 2.
    Jeroslow, R. G.,A Limiting Lagrangian for Infinitely-Constrained Convex Optimization in R n,Journal of Optimization Theory and Applications, Vol. 33, No. 3, 1981.Google Scholar
  3. 3.
    Borwein, J. M.,A Note on Perfect Duality and the Limiting Lagrangian, Mathematical Programming, Vol. 18, pp. 330–337, 1980.Google Scholar
  4. 4.
    Danzer, L., Grunbaum, B., andKlee, V. L.,Helly's Theorem and Its Relatives in Convexity, Proceedings of the Symposia in Pure Mathematics, Vol. 7, Edited by V. L. Klee, American Mathematical Society, Providence, Rhode Island, 1963.Google Scholar
  5. 5.
    Ben-tal, A., Ben-israel, B., andRossinger, E.,A Helly-Type Theorem and Semi-Infinite Programming, Preprint, 1978.Google Scholar
  6. 6.
    Rockafellar, R. T.,Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.Google Scholar
  7. 7.
    Duffin, R. J., andKarlovitz, L. A.,An Infinite Linear Program with a Duality Gap, Management Science, Vol. 12, pp. 122–134, 1965.Google Scholar
  8. 8.
    Karney, D.,Duality Gaps in Semi-infinite Linear Programming, An Approximation Problem, Preprint, 1979.Google Scholar
  9. 9.
    Charnes, A., Cooper, W. W., andKortanek, K. O.,Duality in Semi-infinite Programs and Some Works of Haar and Caratheodory, Management Science, Vol. 9, pp. 209–229, 1963.Google Scholar
  10. 10.
    Duffin, R. J., andJeroslow, R. G.,Lagrangian Functions and Affine Minorants, Carnegie-Mellon University, Preliminary Report, 1978.Google Scholar
  11. 11.
    Blair, C. E., Borwein, J., andJeroslow, R. G.,Convex Programs and Their Closures, Carnegie-Mellon University and Georgia Institute of Technology, GSIA, Management Science Series, 1978.Google Scholar
  12. 12.
    Jeroslow, R. G., andKortanek, K. O.,On Semi-infinite Systems of Linear Inequalities, Israel Journal of Mathematics, Vol. 10, pp. 252–258, 1971.Google Scholar
  13. 13.
    Kortanek, K. O.,Constructing a Perfect Duality in Infinite Programming, Applied Mathematics and Optimization, Vol. 3, pp. 357–377, 1977.Google Scholar
  14. 14.
    Abrams, R. A., andWu, C. T.,Projection and Restriction Methods in Geometric Programming and Related Problems, Journal of Optimization Theory and Applications, Vol. 26, pp. 59–76, 1978.Google Scholar

Copyright information

© Plenum Publishing Corporation 1981

Authors and Affiliations

  • J. M. Borwein
    • 1
  1. 1.Mathematics DepartmentDalhousie UniversityHalifaxCanada

Personalised recommendations