Journal of Optimization Theory and Applications

, Volume 41, Issue 1, pp 261–273 | Cite as

Generalized curve approach to elementary particles

  • L. C. Young
  • P. Nowosad
Contributed Papers

Abstract

The theory developed in Ref. 1 is applied in a simplified form to a relativistic one-particle universe, and boundary symmetry conditions are imposed. The existence, for the particle, of a series of resonance states and a series of gauge states is derived. For the proton and the electron, a selection of such states accounts for the elementary particles observed to date.

Key Words

Generalized curves wave algebras relativity group representations elementary particles resonance states gauge states dislocation line 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Young, L. C.,New Applications of Generalized Curves, Particularly in Physics, Convex Analysis and Optimization, Edited by J. P. Aubin and R. B. Vinter, Pittman, New York, New York, pp. 182–210, 1981.Google Scholar
  2. 2.
    Titchmarsh, E. C.,Eigenfunction Expansions Associated with Second-Order Differential Equations, Clarendon Press, Oxford, England, 1962.Google Scholar
  3. 3.
    Gelfand, I. M., Graev, M. I., andPyatetskii-Shapiro, I. I.,Representation Theory and Automorphic Functions, Saunders, Philadelphia, Pennsylvania, 1968.Google Scholar
  4. 4.
    Landau, L. D., andLifshitz, E.,The Classical Theory of Fields, Addison-Wesley, Reading, Massachusetts, 1951.Google Scholar
  5. 5.
    Gelfand, I. M., andChilov, G. E.,Les Distributions, Dunod, Paris, France, 1962.Google Scholar
  6. 6.
    Jackson, J. D.,Classical Electrodynamics, Wiley, New York, New York, 1962.Google Scholar
  7. 7.
    Alonso, M., andFinn, E. J.,Fundamental University Physics, III, Quantum and Statistical Physics, Addison-Wesley, Reading, Massachusetts, 1967.Google Scholar
  8. 8.
    Frazer, W. R.,Elementary Particles, Prentice Hall, Englewood Cliffs, New Jersey, 1966.Google Scholar

Copyright information

© Plenum Publishing Corporation 1983

Authors and Affiliations

  • L. C. Young
    • 1
    • 2
  • P. Nowosad
    • 3
  1. 1.the University of WisconsinMadison
  2. 2.the Mathematics Research CenterMadison
  3. 3.IMPA, Instituto de Matématica Pura e AplicadaRio de JaneiroBrazil

Personalised recommendations