Advertisement

A cutting-plane algorithm with linear and geometric rates of convergence

  • D. M. Topkis
Contributed Papers

Abstract

This paper presents a cutting-plane algorithm for nonlinear programming which, under suitable conditions, exhibits a linear or geometric global rate of convergence. Other known rates of convergence for cutting-plane algorithms are no better than arithmetic for problems not satisfying a Haar condition. The feature responsible for this improved rate of convergence is the addition at each iteration of a new cut for each constraint, rather than adding only one new cut corresponding to the most violated constraint as is typically the case. Certain cuts can be dropped at each iteration, and there is a uniform upper bound on the number of old cuts retained. Geometric convergence is maintained if the subproblems at each iteration are approximated, rather than solved exactly, so the algorithm is implementable. The algorithm is flexible with respect to the point used to generate new cuts.

Key Words

Cutting-plane algorithms outer approximation methods rates of convergence convex programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kelley, J. E., Jr.,The Cutting-Plane Method for Solving Convex Programs, Journal of the Society for Industrial and Applied Mathematics, Vol. 8, pp. 703–712, 1960.Google Scholar
  2. 2.
    Dinkel, J. J., Elliott, W. H., andKochenberger, G. A.,Computational Aspects of Cutting-Plane Algorithms for Geometric Programming Problems, Mathematical Programming, Vol. 13, pp. 200–220, 1977.Google Scholar
  3. 3.
    Wolfe, P.,Convergence Theory in Nonlinear Programming, Integer and Nonlinear Programming, Edited by J. Abadie, North-Holland Publishing Company, Amsterdam, Holland, 1970.Google Scholar
  4. 4.
    Veinott, A. F., Jr.,The Supporting Hyperplane Method for Unimodal Programming, Operations Research, Vol. 15, pp. 147–152, 1967.Google Scholar
  5. 5.
    Topkis, D. M.,Cutting-Plane Methods without Nested Constraint Sets, Operations Research, Vol. 18, pp. 404–413, 1970.Google Scholar
  6. 6.
    Topkis, D. M.,A Note on Cutting-Plane Methods without Nested Constraint Sets, Operations Research, Vol. 18, pp. 1216–1220, 1970.Google Scholar
  7. 7.
    Wolfe, P.,Accelerating the Cutting Plane Method for Nonlinear Programming, Journal of the Society for Industrial and Applied Mathematics, Vol. 9, pp. 481–488, 1961.Google Scholar
  8. 8.
    Kuhn, H. W., andTucker, A. W.,Nonlinear Programming, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, Edited by J. Neyman, University of California Press, Berkeley, California, 1951.Google Scholar
  9. 9.
    Cheney, E. W., andGoldstein, A. A.,Newton's Method for Convex Programming and Tchebycheff Approximation, Numerische Mathematik, Vol. 1, pp. 253–268, 1959.Google Scholar
  10. 10.
    Eaves, B. C., andZangwill, W. I.,Generalized Cutting Plane Algorithms, SIAM Journal on Control, Vol. 9, pp. 529–542, 1971.Google Scholar
  11. 11.
    Oettli, W.,Solving Optimization Problems with Many Constraints by a Sequence of Subproblems Containing Only Two Constraints, Mathematische Nachrichten, Vol. 71, pp. 143–145, 1976.Google Scholar
  12. 12.
    Blankenship, J. W., andFalk, J. E.,Infinitely Constrained Optimization Problems, Journal of Optimization Theory and Applications, Vol. 19, pp. 261–281, 1976.Google Scholar
  13. 13.
    Gehner, K. R.,Optimization Problems with an Infinite Number of Constraints and Applications to Constrained Approximation Problems, University of Wisconsin, PhD Thesis, 1971.Google Scholar
  14. 14.
    Afriat, S. N.,The Progrssive Support Method for Convex Programming, SIAM Journal on Numerical Analysis, Vol. 7, pp. 447–457, 1970.Google Scholar
  15. 15.
    Blum, E., andOettli, W.,Mathematische Optimierung, Springer-Verlag, Berlin, Germany, 1975.Google Scholar
  16. 16.
    Elzinga, J., andMoore, T. G.,A Central Cutting Plane Algorithm for the Convex Programming Problem, Mathematical Programming, Vol. 8, pp. 134–145, 1975.Google Scholar
  17. 17.
    Gonzaga, C., andPolak, E.,On Constraint Dropping Schemes and Optimality Functions for a Class of Outer Approximations Algorithms, SIAM Journal on Control and Optimization, Vol. 17, pp. 477–493, 1979.Google Scholar
  18. 18.
    Hogan, W. W.,Applications of a General Convergence Theory for Outer Approximation Algorithms, Mathematical Programming, Vol. 5, pp. 151–168, 1973.Google Scholar
  19. 19.
    Ortega, J. M., andRheinboldt, W. C.,Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, New York, 1970.Google Scholar
  20. 20.
    Kapur, K. C.,On Cutoff Optimization Methods in Infinite-Dimensional Spaces and Applications, Journal of Optimization Theory and Applications, Vol. 12, pp. 16–31, 1973.Google Scholar
  21. 21.
    Levitin, E. S., andPolyak, B. T.,Constrained Minimization Methods, USSR Computational Mathematics and Mathematical Physics, Vol. 6, pp. 1–50, 1966.Google Scholar
  22. 22.
    Remes, E.,Sur un Procédé Convergent d'Approximations Successives pour Déterminer les Polynomes d'Approximation, Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences, Paris, France, Vol. 198, pp. 2063–2065, 1934.Google Scholar
  23. 23.
    Remes, E.,Sur le Calcul Effectif des Polynomes d'Approximation de Tchebichef, comptes Rendus Hebdomadaires des Séances de l'Académic des Sciences, Paris, France, Vol. 199, pp. 337–340, 1934.Google Scholar
  24. 24.
    Remes, E.,General Computational Methods of Chebyshev Approximation, Academy of Sciences of the Ukrainian SSR, Kiev, Ukraine, 1957 (United States Atomic Energy Commission Translation Series, AEC-TR-4491).Google Scholar
  25. 25.
    Veidinger, L.,On the Numerical Determination of the Best Approximations in the Chebyshev Sense, Numerische Mathematik, Vol. 2, pp. 99–105, 1960.Google Scholar
  26. 26.
    Cheney, E. W.,Introduction to Approximation Theory, McGraw-Hill Book Company, New York, New York, 1966.Google Scholar
  27. 27.
    Avriel, M.,Nonlinear Programming: Analysis and Methods, Prentice-Hall, Englewood Cliffs, New Jersey, 1976.Google Scholar
  28. 28.
    Luenberger, D. G.,Introduction to Linear and Nonlinear Programming, Addison-Wesley Publishing Company, Reading, Massachusetts, 1973.Google Scholar
  29. 29.
    Zangwill, W. I.,Nonlinear Programming: A Unified Approach, Prentice-Hall, Englewood Cliffs, New Jersey, 1969.Google Scholar
  30. 30.
    Dantzig, G. B., andCottle, R. W.,Positive (Semi) Definite Programming, Nonlinear Programming, Edited by J. Abadie, North-Holland Publishing Company, Amsterdam, Holland, 1967.Google Scholar
  31. 31.
    Lemke, C. E.,Bimatrix Equilibrium Points and Mathematical Programming, Management Science, Vol. 11, pp. 681–689, 1965.Google Scholar
  32. 32.
    Miller, C. E.,The Simplex Method for Local Separable Programming, Recent Advances in Mathematical Programming, Edited by R. L. Graves and P. Wolfe, McGraw-Hill Book Company, New York, New York, 1963.Google Scholar
  33. 33.
    Zoutendijk, G.,Nonlinear Programming: A Numerical Survey, SIAM Journal on Control, Vol. 4, pp. 194–210, 1966.Google Scholar
  34. 34.
    Avriel, M., Dembo, R., andPassy, U.,Solution of Generalized Geometric Programs, International Journal for Numerical Methods in Engineering, Vol. 9, pp. 149–168, 1975.Google Scholar
  35. 35.
    Dembo, R. S.,Current State of the Art of Algorithms and Computer Software for Geometric Programming, Journal of Optimization Theory and Applications, Vol. 26, pp. 149–183, 1978.Google Scholar
  36. 36.
    Rijckaert, M. J., andMartens, X. M.,Comparison of Generalized Geometric Programming Algorithms, Journal of Optimization Theory and Applications, Vol. 26, pp. 205–242, 1978.Google Scholar
  37. 37.
    Sarma, P. V. L. N., Martens, X. M., Reklaitis, G. V., andRijckaert, M. J.,A Comparison of Computational Strategies for Geometric Programs, Journal of Optimization Theory and Applications, Vol. 26, pp. 185–203, 1978.Google Scholar
  38. 38.
    Goldstein, A. A.,Constructive Real Analysis, Harper and Row, New York, New York, 1967.Google Scholar
  39. 39.
    Rockafellar, R. T.,Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970.Google Scholar
  40. 40.
    Zoutendijk, G.,Methods of Feasible Directions, Elsevier Publishing Company, Amsterdam, Holland, 1960.Google Scholar
  41. 41.
    Dantzig, G. B.,Linear Programming and Extensions, Princeton University Press, Princeton, New Jersey, 1963.Google Scholar
  42. 42.
    Fiacco, A. V., andMcCormick, G. P.,Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley and Sons, New York, New York, 1968.Google Scholar
  43. 43.
    Robinson, S. M.,An Application of Error Bounds for Convex Programming in a Linear Space, SIAM Journal on Control, Vol. 13, pp. 271–273, 1975.Google Scholar
  44. 44.
    Hoffman, A. J.,On Approximate Solutions of Systems of Linear Inequalities, Journal of Research of the National Bureau of Standards, Vol. 49, pp. 263–265, 1952.Google Scholar
  45. 45.
    Robinson, S. M.,Stability Theory for Systems of Inequalities, Part 2: Differentiable Nonlinear Systems, SIAM Journal on Numerical Analysis, Vol. 13, pp. 497–513, 1976.Google Scholar
  46. 46.
    Stern, M. H., andTopkis, D. M.,Rates of Stability in Nonlinear Programming, Operations Research, Vol. 24, pp. 462–476, 1976.Google Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • D. M. Topkis
    • 1
  1. 1.Bell LaboratoriesHolmdel

Personalised recommendations