Advertisement

Application of the epsilon technique to the identification of distributed-parameter systems

  • G. Di Pillo
  • L. Grippo
Contributed Papers

Abstract

The aim of this paper is to present and discuss the application of the epsilon technique to the identification of distributed-parameter systems. After the problem formulation, attention is focused on computational aspects. The numerical results obtained for two typical systems are presented.

Keywords

Problem Formulation Typical System Computational Aspect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tzafestas, S. G.,Identification of Stochastic Distributed Parameter Systems, International Journal of Control, Vol. 11, No. 4, 1970.Google Scholar
  2. 2.
    Collins, P. L., andKhatri, H. C.,Identification of Distributed Parameter Systems Using Finite Differences, ASME Transaction, Series D, Vol. 91, No. 2, 1969.Google Scholar
  3. 3.
    Perdreauville, F. J., andGoodson, R. E.,Identification of Systems Described by Partial Differential Equations, ASME Transaction, Series D, Vol. 88, No. 2, 1966.Google Scholar
  4. 4.
    Fairman, F. W., andShen, D. W. C.,Parameter Identification for a Class of Distributed Systems, International Journal of Control, Vol. 11, No. 6, 1970.Google Scholar
  5. 5.
    Zhivoglyadov, V. P., andKaipov, V. K.,Identification of Distributed Parameter Plants in the Presence of Noises, Identification in Automatic Control Systems, IFAC Symposium, Prague, 1967.Google Scholar
  6. 6.
    Zhivoglyadov, V. P., andKaipov, V. K.,Application of the Method of Stochastic Approximations in the Problem of Identification, Avtomatika i Telemekhanika, Vol. 27, No. 10, 1966.Google Scholar
  7. 7.
    Bensoussan, A.,Identification de Systèmes Gouvernés par des Équations aux Dérivées Partielles, Computing Methods in Optimization Problems, Vol. 2, Edited by L. A. Zadeh, L. W. Neustadt, and A. V. Balakrishnan, Academic Press, New York, 1969.Google Scholar
  8. 8.
    Phillipson, G. A.,Identification of Distributed Systems, American Elsevier Publishing Company, New York, 1971.Google Scholar
  9. 9.
    Chavent, G.,Analyse Fonctionelle et Identification de Coéfficients Répartis dans les Équations aux Dérivées Partielles, Thesis, Faculté des Sciences, Paris, 1971.Google Scholar
  10. 10.
    Balakrishnan, A. V.,On a New Computing Technique in Optimal Control, SIAM Journal on Control, Vol. 6, No. 2, 1968.Google Scholar
  11. 11.
    De Julio, S.,Computation of Optimal Controls for Infinite Dimensional Systems, Proceedings of the Second Annual Princeton Conference on Information Sciences and Systems, Princeton University, Princeton, New Jersey, 1968.Google Scholar
  12. 12.
    Lions, J. L.,Controle Optimal des Systèmes Gouvernés par des Équations aux Dérivées Partielles, Dunod, Paris, 1968.Google Scholar
  13. 13.
    Balakrishnan, A. V.,The Epsilon Technique, A Constructive Approach to Optimal Control, Control Theory and the Calculus of Variations, Edited by A. V. Balakrishnan, Academic Press, New York, 1969.Google Scholar
  14. 14.
    De Julio, S.,On the Optimization of Infinite Dimensional Linear Systems, Computing Methods in Optimization Problems, Vol. 2, Edited by L. A. Zadeh, L. W. Neustadt, and A. V. Balakrishnan, Academic Press, New York, 1969.Google Scholar
  15. 15.
    Balakrishnan, A. V.,A New Computing Technique in System Identification, Journal of Computer and System Sciences, Vol. 2, No. 1, 1968.Google Scholar
  16. 16.
    Balakrishnan, A. V.,On a New Computing Technique in Optimal Control and Its Application to Minimal Time Flight Profile Optimization, Journal of Optimization Theory and Applications, Vol. 4, No. 1, 1969.Google Scholar
  17. 17.
    De Julio, S.,Applicazione del Metodo-ε alla Soluzione di Due Problemi di Ottimizzazione di Sistemi a Parametri Distribuiti, Rendiconti della LXX Riunione Annuale AEI, Rimini, Italy, 1969.Google Scholar
  18. 18.
    Kenneth, P., Sibony, M., andYvon, J. P.,Penalization Techniques for Optimal Control Problems Governed by Partial Differential Equations, Computing Methods in Optimization Problems, Vol. 2, Edited by L. A. Zadeh, L. W. Neustadt, and A. V. Balakrishnan, Academic Press, New York, 1969.Google Scholar
  19. 19.
    Aubin, J. P.,Estimate of the Error in the Approximation of Optimization Problems with Constraints by Problems Without Constraints, Control Theory and the Calculus of Variations, Edited by A. V. Balakrishnan, Academic Press, New York, 1969.Google Scholar
  20. 20.
    Von Rosenberg, D. U.,Methods for the Numerical Solution of Partial Differential Equations, American Elsevier Publishing Company, New York, 1969.Google Scholar
  21. 21.
    Pierre, D. A.,Optimization Theory with Applications, John Wiley and Sons, New York, 1969.Google Scholar

Copyright information

© Plenum Publishing Corporation 1973

Authors and Affiliations

  • G. Di Pillo
    • 1
  • L. Grippo
    • 1
  1. 1.Institute of AutomationUniversity of RomeRomeItaly

Personalised recommendations