Advertisement

Journal of Optimization Theory and Applications

, Volume 15, Issue 1, pp 119–129 | Cite as

A general criterion for optimal structural design

  • M. A. Save
Contributed Papers

Abstract

A general criterion of structural optimality is presented and discussed. It applies to multipurpose structures subjected to multiple or movable loadings, the design of which is defined by several design functions. The cost is assumed to be a convex function of the various specific energies associated with the respective behavioral constraints. This criterion is shown to include most (if not all) criteria used up to now.

Key Words

Structural optimization optimization theorems structural design solid mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wasiutynski, Z., andBrandt, A.,The Present State of Knowledge in the Field of Optimum Design of Structures, Applied Mechanics Reviews, Vol. 16, pp. 341–350, 1963.Google Scholar
  2. 2.
    Sheu, C. Y., andPrager, W.,Recent Developments in Optimal Structural Design, Applied Mechanics Reviews, Vol. 21, pp. 985–992, 1968.Google Scholar
  3. 3.
    Niordson, F., andPedersen, P.,A Review of Optimal Structural Design, The Danish Center for Applied Mathematics and Mechanics, Report No. 31, 1972.Google Scholar
  4. 4.
    Prager, W., andTaylor, J. E.,Problems of Optimal Structural Design, Journal of Applied Mechanics, Vol. 35, pp. 102–106, 1968.Google Scholar
  5. 5.
    Prager, W.,Optimality Criteria Derived from Classical Extremum Principles, An Introduction to Structural Optimization, Edited by M. Z. Cohn, University of Waterloo, Waterloo, Ontario, Canada, 1968.Google Scholar
  6. 6.
    Prager, W.,Conditions for Structural Optimality, Computers and Structures, Vol. 2, pp. 833–840, 1972.Google Scholar
  7. 7.
    Prager, W.,An Introduction to Plasticity, Addison-Wesley Publishing Company, Reading, Massachusetts, 1959.Google Scholar
  8. 8.
    Save, M., andMassonnet, C.,Plastic Analysis and Design of Plates, Shells, and Disks, North Holland Publishing Company, Amsterdam, Holland, 1972.Google Scholar
  9. 9.
    Flügge, W.,Handbook of engineering Mechanics, Chapter 44, McGraw-Hill Book Company, New York, New York, 1962.Google Scholar
  10. 10.
    Save, M.,Unified Formulation of the Theory of Optimal Plastic Design with Convex Cost Function, Journal of Structural Mechanics, Vol. 1, pp. 267–276, 1972.Google Scholar
  11. 11.
    Drucker, D. C., andShield, R. T.,Design for Minimum Weight, Proceedings of the 9th International Congress on Applied Mechanics, Book 5, Brussels, Belgium, 1956.Google Scholar
  12. 12.
    Save, M., andPrager, W.,Minimum-Weight Design of Beams Subjected to Fixed and Moving Loads, Journal of Mechanics and Physics of Solids, Vol. 11, pp. 255–267, 1963.Google Scholar
  13. 13.
    Save, M., andShield, R. T.,Minimum-Weight Design of Sandwich Shells Subjected to Fixed and Moving Loads, Proceedings of the 11th International Congress of Applied Mechanics, Munich, Germany, 1964.Google Scholar
  14. 14.
    Massonnet, C., andSave, M.,Plastic Analysis and Design, Blaisdell Publishing Company, Vol. 1, Waltham, Massachusetts, 1965.Google Scholar
  15. 15.
    Marcal, P. V., andPrager, W.,A Method of Optimal Design, Journal de Mécanique, Vol. 3, pp. 509–530, 1964.Google Scholar
  16. 16.
    Sacchi, G., andSave, M.,Le Problème du Poids Minimum d'Armature des Plaques en Béton Armé, AIPC, Extrait du Colume 29.II des Memoires, Zurich, Switzerland, 1969.Google Scholar
  17. 17.
    Lamblin, D. O., andSave, M.,Minimum-Volume Plastic Design of Beams for Movable Loads, Meccanica, Vol. 6, No. 3, 1971.Google Scholar
  18. 18.
    Lamblin, D. O.,Minimum-Weight Plastic Design of Continuous Beams Subjected to One Single Movable Load, Journal of Structural Mechanics, Vol. 1, pp. 133–157, 1972.Google Scholar
  19. 19.
    Lamblin, D. O., andGuerlement, G.,Dimensionnement de Poids Minimum de Plaques Sandwich Circulaires Constituées d'Anneaux d'Epaisseur Constante, Faculté Polytechnique de Mons, Mons, Belgium, Technical Report R6, 1971.Google Scholar
  20. 20.
    Prager, W., andShield, R. T.,Optimal Design of Multi-Purpose Structures, International Journal of Solids and Structures, Vol. 4, pp. 469–475, 1968.Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • M. A. Save
    • 1
  1. 1.Facult'e Polytechnique de MonsMonsBelgium

Personalised recommendations