Advertisement

Journal of Optimization Theory and Applications

, Volume 14, Issue 5, pp 505–520 | Cite as

Geometric and analytic views in existence theorems for optimal control in Banach spaces. Part 1. Distributed parameters

  • L. Cesari
Contributed Papers

Abstract

Existence theorems for optimal control problems in Banach spaces are stated and proved.

Key Words

Existence theorems optimal control control theory Banach spaces distributed parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cesari, L.,Existence Theorems for Problems of Optimization with Distributed and Boundary Controls, Proceedings of the International Congress of Mathematicians, Nice, France, Vol. 3, pp. 157–161, 1970.Google Scholar
  2. 2.
    Cesari, L.,Closure Theorems for Orientor Fields and Weak Convergence, Archive for Rational Mechanics and Analysis, Vol. 55, 1974.Google Scholar
  3. 3.
    Cesari, L.,Existence Theorems for Weak and Usual Solutions in Lagrange Problems with Unilateral Constraints, I, II, Transactions of the American Mathematical Society, Vol. 124, pp. 369–412 and 413–429, 1966.Google Scholar
  4. 4.
    Cesari, L.,Closure Theorems for Orientor Fields, Bulletin of the American Mathematical Society, Vol. 79, pp. 684–689, 1973.Google Scholar
  5. 5.
    Cesari, L., andCowles, D. E.,Existence Theorems for Optimization Problems with Distributed and Boundary Controls, Archive for Rational Mechanics and Analysis, Vol. 46, pp. 321–355, 1972.Google Scholar
  6. 6.
    Cesari, L., andKaiser, P. J.,Closed Operators and Existence Theorems in Multidimensional Problems of Calculus of Variations, Bulletin of the American Mathematical Society, Vol. 80, pp. 473–478, 1974.Google Scholar
  7. 7.
    Kaiser, P. J.,Seminormality Properties of Convex Sets, Circolo Matematico di Palermo (to appear).Google Scholar
  8. 8.
    Kaiser, P. J., andSuryanarayana, M. B.,Orientor Field Equations in Banach Spaces, Journal of Optimization Theory and Applications (to appear).Google Scholar
  9. 9.
    Cesari, L.,Lower Semicontinuity and Lower Closure Theorems without Seminormality Conditions. Annali di Matematica Pura e Applicata, Vol. 98, pp. 381–397, 1974.Google Scholar
  10. 10.
    Cesari, L.,A Necessary and Sufficient Condition for Lower Semicontinuity, Bulletin of the American Mathematical Society, Vol. 80, pp. 467–472, 1974.Google Scholar
  11. 11.
    Cesari, L., andSuryanarayana, M. B.,Closure Theorems Without Seminormality Conditions, Journal of Optimization Theory and Applications (to appear).Google Scholar
  12. 12.
    Cesari, L., andSuryanarayana, M. B.,Convexity and Property (Q) in Optimal Control Theory, SIAM Journal on Control, Vol. 12, No. 4, 1974.Google Scholar
  13. 13.
    Berkovitz, L. D.,Existence and Lower Closure Theorems for Abstract Control Problems, SIAM Journal on Control, Vol. 12, pp. 27–42, 1974.Google Scholar
  14. 14.
    Cesari, L.,An Existence Theorem Without Convexity Conditions, SIAM Journal on Control, Vol. 12, No. 3, 1974.Google Scholar
  15. 15.
    Suryanarayana, M. B.,Linear Control Problems with Total Differential Equations, Transactions of the American Mathematical Society (to appear).Google Scholar

Copyright information

© Plenum Publishing Corporation 1974

Authors and Affiliations

  • L. Cesari
    • 1
  1. 1.Department of MathematicsUniversity of MichiganAnn Arbor

Personalised recommendations