Skip to main content

Advertisement

Log in

Biological aspects of long-term failure of autografts after cruciate ligament replacement

  • Clinical and Experimental Forum
  • Published:
Archives of Orthopaedic and Trauma Surgery Aims and scope Submit manuscript

Summary

The alterations of the ultrastructure of the posterior cruciate ligament autograft of patellar tendon origin were examined in a sheep model 1 year after surgery. The ultrastructure was also compared with that of the normal contralateral posterior cruciate ligament and patellar tendon. The most striking finding was the unimodal distribution of the collagen fibrils, with a predominance of loosely packed thin fibrils in the central portion of the autograft. The results suggested that the remodeled autograft tissue became highly organized but never exhibited the ultrastructural features of a ligament. This could be responsible for the decreased biomechanical properties and the long-term failure of a patellar tendon autograft.

Zusammenfassung

Die ultrastrukturellen Veränderungen eines freien Patellarsehnentransplantates beim hinteren Kreuzbandersatz wurden in einem Schafsmodell 1 Jahr nach Transplantation untersucht. Die Feinstruktur der normalen kontralateralen Patellarsehne und des hinteren Kreuzbandes wurden mit der des Transplantates verglichen. Die unimodale Verteilung der Fibrillendurchmesser zugunsten dünner Fibrillen im zentralen Bereich des Transplantates werden als Ursache für die verminderten biomechanischen Eigenschaften und die langfristige Transplantatinsuffizienz diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi E, Hayashi T (1986) In vitro formation of hybrid fibrils of type-V collagen and type-I collagen. Connect Tissue Res 14:257–266

    PubMed  Google Scholar 

  2. Alm A, Gillquist J (1974) Reconstruction of the anterior cruciate ligament by using the medial third of the patellar ligament. Acta Chir Scand 140:289–296

    PubMed  Google Scholar 

  3. Amiel D, Frank C, Harwood F, Fronek J, Akeson WH (1984) Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res 1:257–265

    PubMed  Google Scholar 

  4. Amiel D, Kleiner JB, Akeson WH (1986) The natural history of the anterior cruciate ligament autograft of patellar tendon origin. Am J Sports Med 14:449–462

    PubMed  Google Scholar 

  5. Arnoczky SP, Tarvin GB, Marshall JL (1982) Anterior cruciate ligament replacement using patellar tendon. J Bone Joint Surg [Am] 64:217–224

    Google Scholar 

  6. Arnoczky SP, Warren RF, Ashlock MA (1986) Replacement of the anterior cruciate ligament using a patellar tendon allograft. J Bone Joint Surg [Am] 63:376–385

    Google Scholar 

  7. Bosch U, Kasperczyk W, Oestern HJ, Tscherne H (1988) Posterior cruciate ligament replacement by a free patellar tendon graft. A morphological study of the early phase healing by early motion. Abstract-Book, 3rd Congress of European Society of Knee Surgery and Arthroscopy, Amsterdam, pp 23–24

  8. Butler DL, Kay MD, Stouffer DC (1985) Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. J Biomech 18:1–8

    PubMed  Google Scholar 

  9. Clancy WG, Narechania RG, Rosenberg TD, Gmeiner JG, Wisnefske DD, Lange TA (1981) Anterior and posterior cruciate ligament reconstruction in rhesus monkeys. J Bone Joint Surg [Am] 63:1270–1284

    Google Scholar 

  10. Dustmann HO, Puhl W, Krempien B (1974) Das Phänomen der Cluster im Arthroseknorpel. Arch Orthop Unfallchir 79:321–333

    PubMed  Google Scholar 

  11. Ghadially FN (1983) Fine structure of synovial joints. Butterworths, London

    Google Scholar 

  12. Johnson RJ, Eriksson E, Haggmark T, Pope MH (1984) Five- to ten-year follow-up evaluation after reconstruction of the anterior cruciate ligament. Clin Orthop 183:122–140

    PubMed  Google Scholar 

  13. Kasperczyk W, Oestern HJ (1986) Sind die Kreuzbänder des Schafes für vergleichende experimentelle Untersuchungen geeignet? Hefte Unfallheilkd 181:150–153

    Google Scholar 

  14. Kasperczyk W, Bosch U, Oestern HJ, Tscherne H (1989) Replacement of the posterior cruciate ligament with a free patellar tendon graft under immediate rehabilitation conditions — one-year results. 6th Congress of the International Society of the Knee, Rome, Italy, May 8–12

  15. McPherson GK, Mendenhall HV, Gibbons DF, Plenk H, Rottmann W, Sanford JB, Kennedy JC, Roth JH (1985) Experimental mechanical and histologic evaluation of the Kennedy ligament augmentation device. Clin Orthop 196:186–195

    PubMed  Google Scholar 

  16. Michna H (1984) Morphometric analysis of loading-induced changes in collagen-fibril populations in young tendons. Cell Tissue Res 236:465–470

    PubMed  Google Scholar 

  17. Mohr W (1987) Pathologie des Bandapparates. Springer, Berlin Heidelberg New York

    Google Scholar 

  18. Noyes FR, Butler DL, Grood ES, Zernicke RF, Hefzy MS (1984) Biomechanical analysis of human ligament grafts used in knee-ligament repairs and reconstructions. J Bone Joint Surg [Am] 66:344–352

    Google Scholar 

  19. Oakes BW, Parker AW, Norman J (1982) Changes in collagen fiber populations in young rat cruciate ligaments in response to a one-month intensive exercise program. Connect Tissue Res 9:212 (Abstr)

    Google Scholar 

  20. Oakes BW (1987) Ultrastructural studies on knee joint ligaments: quantitation of collagen fibre populations in exercised and control rat cruciate ligaments and in human anterior cruciate ligament grafts. NIH/AAOS Workshop on Soft Tissue Repair, Savannah, Georgia, March

  21. Parry DAD, Barnes GRG, Craig AS (1978) A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc R Soc Lond [Biol] 203:305–321

    Google Scholar 

  22. Parry DAD, Craig AS (1978) Collagen fibrils and elastic fibers in rat-tail tendon: an electron-microscopic investigation. Biopolymers 17:843–855

    PubMed  Google Scholar 

  23. Parry DAD, Craig AS (1984) Growth and development of collagen fibrils in connective tissue. In: Ruggeri A, Motta PM (eds) Ultrastructure of the connective tissue matrix. Nijhoff, Boston, pp 34–64

    Google Scholar 

  24. Sandberg R, Balkfors B (1988) Reconstruction of the anterior cruciate ligament. A 5-year follow-up of 89 patients. Acta Orthop Scand 59:288–293

    PubMed  Google Scholar 

  25. Scott JE, Hughes EW (1986) Proteoglycan-collagen relationships in developing chick and bovine tendons. Influence of the physiological environment. Connect Tissue Res 14:267–278

    PubMed  Google Scholar 

  26. Vasseur PB, Pool RR, Arnoczky SP, Lau RE (1985) Correlative biomechanical and histologic study of the cranial cruciate ligament in dogs. Am J Vet Res 46:1842–1854

    PubMed  Google Scholar 

  27. Yahia LH, Drouin G (1989) Microscopical investigations of canine anterior cruciate ligament and patellar tendon: collagen fascicle morphology and architecture. J Orthop Res 7:243–251

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by a grant from the Deutsche Forschungsgemeinschaft Az Oe 88/2-1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosch, U., Decker, B., Kasperczyk, W. et al. Biological aspects of long-term failure of autografts after cruciate ligament replacement. Arch Orthop Trauma Surg 108, 368–372 (1989). https://doi.org/10.1007/BF00932448

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00932448

Keywords

Navigation