Skip to main content
Log in

Diffraction efficiency and energy transfer during hologram formation in reduced KNbO3

  • Contributed Papers
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

Volume phase-hologram formation by the photorefractive effect in KNbO3 is accompanied by a stationary energy transfer between writing beams. The change in energy transfer by applying an electric field on the reduced crystals is shown to be due to an efficient increase in migration length which can reach values comparable or larger than the fringe spacing. It is demonstrated that photovoltaic contribution to the diffraction efficiency and energy transfer is rather small in reduced KNbO3 and that diffusion of photogenerated free holes is the dominant charge transport for the photorefractive effect in unbiased crystals. The experimental results for diffraction efficiency and energy transfer as a function of grating spacing, electric field, light intensity and temperature is well described by a recent theory of Kukhtarev and Vinetskii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Huignard, F. Micheron, E. Spitz: InOptical Properties of Solids. New Developments, ed. by B. O. Seraphin (North-Holland, Amsterdam 1976) pp. 851–992

    Google Scholar 

  2. D. L. Staebler: InHolographic Recording Materials. Topics in Appl. Phys.20 (Springer, Berlin, Heidelberg, New York 1977) pp. 101–133

    Google Scholar 

  3. R. L. Townsend, J. T. La Macchina: J. Appl. Phys.41, 5188–5192 (1970)

    Article  ADS  Google Scholar 

  4. J. B. Thaxter, M. Kestigian: Appl. Opt.13, 913–924 (1974)

    ADS  Google Scholar 

  5. E. Krätzig, R. Orlowski: Appl. Phys.15, 133–139 (1978)

    Article  ADS  Google Scholar 

  6. P. Günter, F. Micheron: Ferroelectrics18, 27–38 (1978)

    Google Scholar 

  7. D. von der Linde, A. M. Glass, K. F. Rodgers: Appl. Phys. Lett.26, 22–24 (1975)

    Article  ADS  Google Scholar 

  8. M. Peltier, F. Micheron: J. Appl. Phys.48, 4683–4690 (1977)

    Article  Google Scholar 

  9. J. P. Huignard, F. Micheron: Appl. Phys. Lett.29, 591–593 (1976)

    Article  ADS  Google Scholar 

  10. K. Megumi, H. Kozuka, M. Kobayashi, Y. Furukata: Appl. Phys. Lett.30, 631–633 (1977)

    Article  ADS  Google Scholar 

  11. D. L. Staebler, J. J. Amodei: J. Appl. Phys.43, 1042–1049 (1972)

    Article  ADS  Google Scholar 

  12. N. Kukhtarev, V. Markov, S. Odulov, M. Soskin, V. Vinetskii: News of Academy of Sciences of USSR, ser. phys.41, 811–820 (1977) (In Russian)

    Google Scholar 

  13. V. Markov, S. Odulov, M. Soskin: News of Academy of Sciences of USSR ser. phys.41, 821–829 (1977) (In Russian)

    Google Scholar 

  14. B. Ya. Zeldonitch: Kratkie soobichenija po fizike (Lebedev Physical Institute Letters, Moscow), No. 5, 20–25 (1970) (In Russian)

  15. N. Kukhtarev, V. Markov, S. Odulov: Optics Commun.23, 338–343 (1977)

    Article  ADS  Google Scholar 

  16. J. J. Amodei: Appl. Phys. Lett.18, 22–24 (1971)

    Article  Google Scholar 

  17. L. Young, W. K. Y. Wong, M. L. W. Thewalt, W. D. Cornish: Appl. Phys. Lett.24, 264–265 (1974)

    Article  Google Scholar 

  18. Y. Ninomiya: J. Opt. Soc. Am.63, 1124–1130 (1973)

    Google Scholar 

  19. D. W. Vahey: J. Appl. Phys.46, 3510–3515 (1975)

    Article  ADS  Google Scholar 

  20. R. Magnusson, T. K. Gaylord: J. Appl. Phys.47, 190–199 (1976)

    Article  ADS  Google Scholar 

  21. M. G. Moharam, L. Young: J. Appl. Phys.48, 3230–3236 (1977)

    Article  ADS  Google Scholar 

  22. U. Flückiger, H. Arend: J. Cryst. Growth43, 406–417 (1978)

    Article  Google Scholar 

  23. P. Günter: Ferroelectrics, to be published

  24. M. G. Moharam, L. Young: J. Appl. Phys.47, 4048–4051 (1976)

    Article  ADS  Google Scholar 

  25. A. Krumins, P. Günter: Phys. Status Solidi, to be publ.

  26. G. A. Alphonse, R. C. Alig, D. L. Staebler, W. Phillips: RCA Rev.36, 213–229 (1975)

    Google Scholar 

  27. E. Wiesendanger: Ferroelectrics6, 263–281 (1974)

    Google Scholar 

  28. V. M. Fridkin, A. A. Grekov, P. V. Ionov, A. I. Rodin, E. A. Savchenko, K. A. Mikhailiana. Ferroelectric8, 433–435 (1974)

    Google Scholar 

  29. N. B. Angert, V. A. Pashkov, N. M. Solovieva: Sov. Phys. JETP35, 167–169 (1972)

    Google Scholar 

  30. K. Shvarts, P. A. Augustor, A. O. Ozols, A. K. Popelis: Ferroelectrics22, 655–658 (1978)

    Google Scholar 

  31. A. V. Guinzberg, K. D. Kochev, Yu. S. Kusminov, T. R. Volk: Phys. Status Solidi (a)29, 309–314 (1975)

    Article  Google Scholar 

  32. P. Günter: Optics Commun.11, 285–290 (1974)

    Article  ADS  Google Scholar 

  33. Y. Ohmori, M. Yamaguchi, K. Yoshino, Y. Inuishi: Japan. J. Appl. Phys.15, 2263–2264 (1976)

    Article  Google Scholar 

  34. J. Handerek, Z. Wróbel, K. Wójcik, Z. Ujna: Ferroelectrics18, 127–129 (1978)

    Google Scholar 

  35. E. Wiesendanger: Ferroelectrics1, 141–148 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krumins, A., Günter, P. Diffraction efficiency and energy transfer during hologram formation in reduced KNbO3 . Appl. Phys. 19, 153–163 (1979). https://doi.org/10.1007/BF00932390

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00932390

PACS

Navigation