Parasitology Research

, Volume 79, Issue 7, pp 551–558 | Cite as

Intracellular lectin-binding sites in symbiont-bearingCrithidia species

  • Maria Cristina Machado Motta
  • Maurilio José Soares
  • Wanderley de Souza
Original Investigations


Crithidia oncopelti, C. deanei, andC. desouzai are flagellates of the Trypanosomatidae family that present bacterium-like endosymbionts in their cytoplasm. Direct and indirect lectin-gold labeling techniques were used at the electron microscopic level in Lowicryl K4M-embedded cells to demonstrate the presence of intracellular lectin-binding sites. We used the lectinsUlex europaeus I, Griffonia simplicifolia II, Ricinus communis I, Arachis hypogaea, G. simplicifolia I, Wistaria floribunda, Limulus polyphemus, andCanavalia ensiformis, which recognize α-l-fucose, α- and β-N-acetylglucosamine, β-galactose and β-N-acetylgalactosamine, β-galactose, α-galactose, β-N-acetylgalactosamine, sialic acid and α-d-mannose, and α-d-glucose residues, respectively. The nucleus was the cellular structure most frequently labeled by the lectins. The Golgi complex was seldom labeled, whereas the endoplasmic reticulum and the flagellar pocket presented a large number of binding sites. Symbionts had their two unit membranes weakly labeled by the different lectins but displayed no labeling of the space between the membranes.


Endoplasmic Reticulum Sialic Acid Cellular Structure Arachis Microscopic Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adhikari HR, Vakil VK (1980) Alteration in surface carbohydrates and in some functional properties of liver lysosomal membrane in vitamin A deficient rat. Biochim Biophys Acta 663:465–478Google Scholar
  2. Bendayan M, Nanci A, Kan FWK (1987) Effect of tissue processsing on colloidal gold cytochemistry. J Histochem Cytochem 35:983–996PubMedGoogle Scholar
  3. Berryman MA, Rodewald RD (1990) An enhanced method for post-embedding immunocytochemical staining which preserves cell membrane. J Histochem Cytochem 38:159–170PubMedGoogle Scholar
  4. Brown JC, Hunt RC (1978) Lectins. Int Rev Cytol 52:277–349PubMedGoogle Scholar
  5. Chang KP (1974) Ultrastructure of symbiotic bacteria in normal and antibiotic-treatedBlastocrithidia culicis andCrithidia oncopelti. J Protozool 21:699–707PubMedGoogle Scholar
  6. Chang KP, Trager W (1974) Nutritional significance of symbiotic bacteria in two species of hemoflagellates. Science 183:531–532PubMedGoogle Scholar
  7. De Carvalho L, Souto-Padrón T, De Souza W (1991) Localization of lectin-binding sites and sugar-binding proteins in tachyzoites ofToxoplasma gondii. J Parasitol 77:156–161PubMedGoogle Scholar
  8. De Souza W (1989) Components of the cell surface of trypanosomatids. Prog Protistol 3:87–184Google Scholar
  9. Dwyer DM, Chang KP (1976) Surface membrane carbohydrate alteractions of a flagellated protozoan mediated by bacterial endosymbiotes. Proc Natl Acad Sci USA 73:852–856PubMedGoogle Scholar
  10. Esteves MJG, Andrade AFB, Angluster J, De Souza W, Mundim MH, Roitman I, Pereira MEA (1982) Cell surface carbohydrates inCrithidia deanei: influence of the endosymbiont. Eur J Cell Biol 26:244–248PubMedGoogle Scholar
  11. Esteves MG, Andrade AFB, Alviano CA, Roitman I, De Souza W, Angluster J (1987) Cell surface carbohydrate differences in wild and mutants strains ofCrithidia fasciculata. J Protozool 34:226–230Google Scholar
  12. Ferraro A, Antonilli L, D'Ermo M, Eufemi M, Rosei MA, Spoto G (1988) Glycoprotein distribution in non histone chromatin proteins from pig liver. Ital J Biochem 37:213–218PubMedGoogle Scholar
  13. Fiorini JE, Faria e Silva PM, Soares MJ, Brazil RP (1989) Três novas espécies de tripanosomatídeos de insetos isolados em Alfenas, Minas Gerais, Brasil. Mem Inst Oswaldo Cruz 84:69–74Google Scholar
  14. Freymüller E, Camargo EP (1981) Ultrastructural differences between species of trypanosomatids with and without endosymbionts. J Protozool 28:175–182PubMedGoogle Scholar
  15. Furukawa K, Terayama H (1979) Pattern of glycosaminoglycans and glycoproteins associated with nuclei of regenerating liver of rat. Biochim Biophys Acta 585:575–588PubMedGoogle Scholar
  16. Gueugnot J, Petavy A, Guillot J, Damez M, Coulet M (1976) Etude de la fixation de diverses lectines à la surface deCrithidia luciliae. C R Soc Biol (Paris) 170:782–785Google Scholar
  17. Gueugnot J, Petavy AF, Guillot J, Damez M, Coulet M (1980) Etude comparative de la fixation de lectines sur les membranes de quatre especes deCrithidia. Protistologica 16:33–38Google Scholar
  18. Gutteridge WE, Macadam RF (1971) An electron microscopic study of the bipolar bodies inCrithidia oncopelti. J Protozool 18:637–640PubMedGoogle Scholar
  19. Hart GW, Holt GD, Haltiwanger RS (1988) Nuclear and cytoplasmic glycosilation: novel saccharide linkage in unexpected places. Trends Biochem Sci 13:380–384PubMedGoogle Scholar
  20. Hubert J, Sve AP, Facy P, Monsigny M (1989) Are nuclear lectins and nuclear glycoproteins involved in the modulation of nuclear functions? Cell Differ Dev 27:69–81PubMedGoogle Scholar
  21. Kan FWK, Pinto da Silva P (1986) Preferential association of glycoproteins to the euchromatin regions of cross-fractured nuclei as revealed by fracture-label. J Cell Biol 102:576–586PubMedGoogle Scholar
  22. Kinoshita S, Yoshii K, Tonegawa Y (1988) Specific binding of lectins with the nucleus of the sea urchin embryo and changes in the lectin affinity of the embryonic chromatin during the course of development. Exp Cell Res 175:148–157PubMedGoogle Scholar
  23. Margolis RK, Crockett CP, Kiang WL, Margolis RV (1976) Glycosaminoglycans and glycoproteins associated with rat brain nuclei. Biochim Biophys Acta 451:465–469PubMedGoogle Scholar
  24. McLaughlin GL, Wood DL, Cain GD (1983) Lipids and carbohydrates in symbiotic and aposymbioticCrithidia oncopelti andBlastocrithidia culicis. Comp Biochem Physiol 76:143–152Google Scholar
  25. Motta MCM, Solé-Cava AM, Faria e Silva PM, Fiorini JE, Soares MJ, De Souza W (1991a) Morphological and biochemical characterization of the trypanosomatidsCrithidia desouzai andHerpetomonas anglusteri. Can J Zool 9:571–577Google Scholar
  26. Motta MCM, Saraiva EMB, Silva Filho FC, De Souza W (1991b) Cell surface charge and sugar residues ofC. fasciculata andC. luciliae. Microbios 68:87–96PubMedGoogle Scholar
  27. Mundim MH, Roitman I, Herman MA, Kitajima EW (1974) Simple nutrition ofCrithidia deanei, a reduviid trypanosomatid with an endosymbiont. J Protozool 21:518–521PubMedGoogle Scholar
  28. Newton BA (1957) A synthetic growth medium for the trypanosomatid flagellateStrigomonas (Herpetomonas) oncopelti. Nature 177:279–280Google Scholar
  29. Nicolson GL (1974) The interactions of lectins with animal cell surface. Int Rev Cytol 39:89–190PubMedGoogle Scholar
  30. Oda LM, Silva-Filho FC, Angluster J, Roitman I, De Souza W (1984) Surface anionic groups in symbiote-bearing and symbiote-free strains ofCrithidia deanei. J Protozool 31:131–134Google Scholar
  31. Petry K, Schottelius J, Dollet M (1987) Differentiation ofPhytomonas sp. and lower trypanosomatids (Herpetomonas, Crithidia) by agglutination tests with lectins. Parasitol Res 74:1–4Google Scholar
  32. Rautenberg P, Reinwald E, Risse HJ (1980) Evidence for concanavalin A binding sites on the surface coat ofTrypanosoma congolense. Parasitology 80:113–122PubMedGoogle Scholar
  33. Rizzo WB, Bustin M (1977) Lectins as probes of chromatin structure. J Biol Chem 252:7062–7067PubMedGoogle Scholar
  34. Roth J (1983) Application of lectin-gold complex for electron microscopic localization of glycoconjugates on thin sections. J Histochem Cytochem 31:987–999PubMedGoogle Scholar
  35. Roth J, Lucocq JM, Charest PM (1984) Light and electron microscopic demonstration of sialic acid residues with the lectin fromLimax flavus: a cytochemical affinity technique with the use of fetuin-gold complexes. J Histochem Cytochem 32:1167–1176PubMedGoogle Scholar
  36. Schauer R, Reuter G, Muehlfordt H, Andrade AFB, Pereira MEA (1983) The occurrence ofN-acetyl- andN-glycolylneuraminic acid inTrypanosoma cruzi. Hoppe-Seyler's Z Physiol Chem 364:1053–1057PubMedGoogle Scholar
  37. Seve AP, Douvier HD, Masson C, Gerand G, Boutelle M (1984) In situ distribution in different cell types of nuclear glycoconjugates detected by two lectins. J Submicrosc Cytol 16:631–641PubMedGoogle Scholar
  38. Sharon N, Lis H (eds) (1989) Lectins. Chapman and Hall, New York, University Press, CambridgeGoogle Scholar
  39. Soares MJ, De Souza W (1988) Freeze-fracture study of the endosymbiont ofBlastocrithidia culicis. J Protozool 35:370–374Google Scholar
  40. Soares RMA, Alviano CS, Esteves MJG, Angluster J, Silva-Filho FC, De Souza W (1988) Changes in cell surface anionogenic groups during differentiation ofHerpetomonas samuelpessvai mediated by dimethylsulfoxide. Cell Biophysics 13:29–41PubMedGoogle Scholar
  41. Stein GS, Roberts RM, Davis JL, Head WJ, Stein JL, Thrall CL, Vee JL, Welch DW (1975) Are glycoproteins and glycosaminoglycans components of the eukaryotic genome? Nature 258:639–641PubMedGoogle Scholar
  42. Thiéry JP (1967) Mise en evidence des polysaccharide sur coupes fines en microscopie eletronique. J Microsc 6:987–1018Google Scholar
  43. Vannier-Santos MA, Saraiva EMB, De Souza W (1991) Nuclear and cytoplasmic lectin binding sites in promastigotes ofLeishmania. J Histochem Cytochem 39:793–800PubMedGoogle Scholar
  44. Warren LG (1960) Me abolism ofSchyzotrypanum cruzi, Chagas I. Effect of culture age and substrate concentration on respiratory rate. J Parasitol 46:529–539PubMedGoogle Scholar
  45. Weisbrod S, Groudine M, Weintraub H (1980) Interaction of HMG 14 and 17 with actively transcribed genes. Cell 19:289–301PubMedGoogle Scholar
  46. Wilson ME, Pearson RD (1984) Stage-specitic variations in lectin binding toLeishmania donovani. Infect Immun 46:128–134PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Maria Cristina Machado Motta
    • 1
  • Maurilio José Soares
    • 1
    • 2
  • Wanderley de Souza
    • 1
  1. 1.Departamento de Parasitologia e Biofisica Cellular, Instituto de Biofisica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Departamento de Ultra-estrutura e Biologia CellularInstituto Oswaldo Cruz/FIOCRUZRio de JaneiroBrazil

Personalised recommendations