Advertisement

Effects of the medium in NMR Communication 6. Concentration dependences of the chemical shift of hydrogen chloride in various solvents

  • V. S. Petrosyan
  • E. Ya. Davydov
  • O. A. Reutov
Physical Chemistry
  • 27 Downloads

Conclusions

  1. 1.

    A study of the concentration dependences of the chemical shifts of hydrogen chloride in various electron-donor solvents indicates the formation of an intermolecular hydrogen bond between the HCl and solvent molecules.

     
  2. 2.

    The composition and structure of the donor-acceptor complexes formed depend on the ratio of the HCl and solvent (P) concentrations. If [HCl] ≫ [P], then the polymer autoassociate [HCl]n predominates in solution; if [HCl] = [P], the main component of the solution is the oligomer complex mP·(HCl)m; if [HCl] ≪ [P], monomer complexes P · HCl predominate in solution.

     
  3. 3.

    The strength of the intermolecular hydrogen bonds formed in the complexes mP · (HCl)m is characterized by the depth of the plateau of the experimental curves, while for the complexes P. HC1 it is characterized by the extrapolated chemical shift with decreasing HC1 concentration.

     

Keywords

Hydrogen Polymer Chloride Hydrogen Bond Chemical Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. S. Petrosyan, I. V. Petrosyan, A. S. Gudkova, and O. A. Reutov, Izv. Akad. Nauk SSSR, Ser. Khim., 1727 (1973).Google Scholar
  2. 2.
    R. S. Drago, M. S. Nozari, and G. C. Vogel, J. Amer. Chem. Soc.,94, 90 (1972).Google Scholar
  3. 3.
    G. L. Nelson, G. C. Levy, and J. D. Cargioli, J. Amer. Chem. Soc.,94, 3089 (1972).Google Scholar
  4. 4.
    R. E. Dessy, G. F. Reynolds, and J. Kim, J. Amer. Chem. Soc.,81, 2683 (1959).Google Scholar
  5. 5.
    Y. P. Beletskaya, O. A. Reutov, V. S. Petrosyan, and L. V. Savinykh, Tetrahedron Letters, 485 (1969).Google Scholar
  6. 6.
    Yu. G. Bundel', V. I. Rozenberg, I. N. Krokhina, and O. A. Reutov, Zh. Organ. Khimii,6, 1519 (1970).Google Scholar
  7. 7.
    Yu. N. Kol'tsov, V. V. Yastrebov, and S. S. Korovin, Zh. Neorgan. Khimii,12, 231 (1967).Google Scholar
  8. 8.
    Yu. M. Golubkov, V. V. Yastrebov, and S. S. Korovin, Zh. Neorgan. Khimii,14, 1082 (1969).Google Scholar
  9. 9.
    P. M. Borodin and N. S. Sventitskii, in: Nuclear Magnetic Resonance [in Russian], No. 2, Izd. LGU (1968).Google Scholar
  10. 10.
    J. Emsley, J. Finney, and L. Sutcliffe, High-Resolution NMR Spectroscopy [Russian translation], Vol. 1, Mir (1968).Google Scholar
  11. 11.
    J. Pople, V. Schneider, and G. Bernstein, High Resolution NMR Spectra [Russian translation], IL (1962).Google Scholar
  12. 12.
    P. Laszlo, in: Progress in NMR, Vol. 3, Pergamon Press, Oxford (1967), p. 23.Google Scholar
  13. 13.
    J. Homer, Tetrahedron,23, 4065 (1967).Google Scholar
  14. 14.
    G. R. Wiley and S. Y. Miller, J. Amer. Chem. Soc.,94, 3287 (1972).Google Scholar
  15. 15.
    J. C. Davis and K. K. Deb, Advances Magnetic Resonance,4, 201 (1970).Google Scholar
  16. 16.
    J. A. Riddick and W. B. Bunger, Organic Solvents, Wiley-Interscience, New York (1970).Google Scholar

Copyright information

© Consultants Bureau 1974

Authors and Affiliations

  • V. S. Petrosyan
    • 1
  • E. Ya. Davydov
    • 1
  • O. A. Reutov
    • 1
  1. 1.M. V. Lomonosov Moscow State UniversityUSSR

Personalised recommendations