Advertisement

Parasitology Research

, Volume 79, Issue 5, pp 409–415 | Cite as

Electron immunogold labeling of regulatory peptide immunoreactivity in the nervous system ofMoniezia expansa (Cestoda: Cyclophyllidea)

  • G. P. Brennan
  • D. W. Halton
  • A. G. Maule
  • C. Shaw
Original Investigations

Abstract

An electron immunogold-labeling technique was used in conjunction with a post-embedding procedure to demonstrate for the first time the ultrastructural distribution of the parasitic platyhelminth neuropeptide, neuropeptide F (NPF(, in the nervous system of the cestodeMoniezia expansa. Two axon types, distinguished by their populations of different-sized electron-dense vesicles, were identified. Immunogold labeling demonstrated an apparent homogeneity of PP, FMR Famide and NPF (M. expansa) antigenic sites throughout the larger dense-cored vesicles within the central nervous system. Triple labeling clearly demonstrated the co-localisation of immunoreactivities (IR) for NPF, PP and FMR Famide within the same dense-cored vesicles. The presence of NPF-IR within the vesicles occupying the perikaryon of the neuronal cell body indicated that the peptides had undergone post-translational C-terminal amidation prior to entering the axon. Antigen pre-absorption experiments using NPF prevented labeling with either PP or FMR famide antisera, and the failure of these antisera to block NPF-IR supports the view that some, if not all, of the PP/FMR Famide-IR is due to NPF-like peptides.

Keywords

Peptide Neuronal Cell Cell Body Regulatory Peptide Neuronal Cell Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brennan GP, Halton DW, Maule AG, Shaw C, Johnston CF, Moore S, Fairweather I (1993) Immunoelectron microscopical studies of regulatory peptides in the nervous system of the monogenean parasite,Diclidophora merlangi. Parasitology 106 171–176Google Scholar
  2. Curry J, Shaw C, Johnston CF, Thim L, Buchanan KD (1992) Neuropeptide F: primary structure from the turbellarianArtioposthia triangulata. Comp Biochem Physiol [C] 101:269–274Google Scholar
  3. Fairweather I, Halton DW (1991) Neuropeptides in platyhelminths. Parasitology 102:S77-S92PubMedGoogle Scholar
  4. Fairweather I, McCartney GA, Johnston CF, Halton DW, Buchanan KD (1988) Immunocytochemical demonstration of 5-hydroxytryptamine (serotonin) and vertebrate neuropeptides in the nervous system of excysted cysticercoid larvae of the rat tapeworm (Hymenolepis diminuta (Cestoda, Cyclophyllidea). Parasitol Res 74:371–379PubMedGoogle Scholar
  5. Fairweather I, Mahendrasingham S, Johnston CF, Halton DW, Shaw C (1990) Peptidergic nerve elements in three developmental stages of the tetraphyllidean tapewormTrilocularia acanthiaevulgaris. An immunocytochemical study. Parasitol Res 76:497–508PubMedGoogle Scholar
  6. Gustafsson MKS (1992) The neuroanatomy of parasitic flatworms. Adv Neurol Immunol 2:267–286Google Scholar
  7. Gustafsson MKS, Wikgren MC (1989) Development of immunoreactivity to the invertebrate neuropeptide small cardiac peptide B in the tapewormDiphyllobothrium dendriticum. Parasitol Res 75:396–400PubMedGoogle Scholar
  8. Gustafsson MKS, Wikgren MC, Karhi TJ, Schot LPC (1985) Immunocytochemical demonstration of neuropeptides and sero tonin in the tapewormDiphyllobothrium dendriticum. Cell Tissue Res 240:255–260PubMedGoogle Scholar
  9. Gustafsson MKS, Lehtonen MAI, Sundler F (1986) Immunocytochemical evidence for the presence of mammalian neurohormonal peptides in neurons of the tapewormDiphyllobothrium dendriticum. Cell Tissue Res 243:41–49PubMedGoogle Scholar
  10. Halton DW, Fairweather I, Shaw C, Johnston CF (1990) Regulatory peptides in parasitic platyhelminths. Parasitol Today 6:284–290PubMedGoogle Scholar
  11. Halton DW, Brennan GP, Maule AG, Shaw C, Johnston CF, Fairweather I (1991) The ultrastructure and immunogold labelling of pancreatic polypeptide-immunoreactive cells associated with the egg-forming apparatus of a monogenean parasite,Diclido phora merlangi. Parasitology 102:429–436PubMedGoogle Scholar
  12. Halton DW, Shaw C, Maule AG, Johnston CF, Fairweather I (1992) Peptidergic messengers: a new perspective of the nervous system of parasitic platyhelminths. J Parasitol 78:179–193PubMedGoogle Scholar
  13. Leung PS, Shaw C, Maule AG, Thim L, Johnston CF, Irvine GB (1992) A molluscan neuropeptide F. Regul Peptides 35:242Google Scholar
  14. Maule AG, Shaw C, Halton DW, Johnston CF, Fairweather I (1989) Localization, quantification and characterization of pancreatic polypeptide immunoreactivity in the parasitic flatwormDiclidophora merlangi and its fish host (Merlangius merlangus). Gen Comp Encocrinol 74:50–56Google Scholar
  15. Maule AG, Halton DW, Johnston CF, Shaw C, Fairweather I (1990a) The serotoninergic, cholinergic and peptidergic components of the nervous system in the monogenean parasiteDiclidophora merlangi: a cytochemical study. Parasitology 100:255–273PubMedGoogle Scholar
  16. Maule AG, Halton DW, Johnston CF, Shaw C, Fairweather I (1990b) A cytochemical study of the serotoninergic, cholinergic and peptidergic components of the reproductive sytstem in the monogenean parasite.Diclidophora merlangi. Parasitol Res 76:409–419PubMedGoogle Scholar
  17. Maule AG, Shaw C, Halton DW, Thim L, Johnston CF, Fairweather I, Buchanan KD (1991) Neuropeptide F: a novel parasitic flatworm regulatory peptide fromMoniezia expansa (Cestoda: Cyclophyllidea). Parasitology 102:309–316Google Scholar
  18. Maule AG, Brennan GP, Halton DW, Shaw C, Johnston CF, Moore S (1992a) Neuropeptide F-immunorectivity in the monogenean parasiteDiclidophora merlangi. Parasitol Res 78:655–660PubMedGoogle Scholar
  19. Maule AG, Shaw C, Halton DW, Brennan GP, Johnston CF, Moore S (1992b) Neuropeptide F (Moniezia expansa): localization and characterization using specific antisera. Parasitology 105:505–512PubMedGoogle Scholar
  20. Maule AG, Halton DW, Shaw C, Johnston CF (1993) The cholinergic, serotoninergic and peptidergic components of the nervous system ofMoniezia expansa (Cestoda, Cyclophyllidea). Parasitology 106:429–440PubMedGoogle Scholar
  21. McKay DM, Fairweather I, Johnston CF, Shaw C, Halton DW (1991) Immunocytochemical and radioimmunometrical demonstration of seretonin-and neuropeptide-immunoreactivities in the adult rat tapeworm,Hymenolepis diminuta (Cestoda, Cyclophyllidae). Parasitology 103:275–289PubMedGoogle Scholar
  22. Rajpara SM, Garcia PD, Roberts R, Eliassen JC, Owens DF, Maltby D, Myers RM, Mayeri E (1992) Identification and molecular cloning of a neuropeptide Y homolog that produces prolonged inhibition inAplysia neurons. Neuron 9:505–513PubMedGoogle Scholar
  23. Smart D, Shaw C, Johnston C, Thim L, Halton D, Buchanan K (1992) Peptide tyrosine phenylalanine: a novel neuropeptide F-related nonapeptide from the brain of the squid,Loligo vulgaris. Biochem Biophys Res Commun 186:1616–1623PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • G. P. Brennan
    • 1
  • D. W. Halton
    • 1
  • A. G. Maule
    • 2
  • C. Shaw
    • 2
  1. 1.Comparative Neuroendocrinology Research Group, School of Biology and BiochemistryThe Queen's University of BelfastBelfastNorthern Ireland, UK
  2. 2.School of Clinical MedicineThe Queen's University of BelfastBelfastNorthern Ireland, UK

Personalised recommendations