Skip to main content
Log in

Labeling and initial characterization of polar lipids in cultures ofPlasmodium falciparum

  • Original Investigations
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The present report describes the radioactive labeling of polar lipids in in vitro cultures ofPlasmodium falciparum as well as their extraction with organic solvents and their partial characterization by chemical and enzymatic methods. All substances detected could be cleaved by alkali, suggesting that they were esters rather than sphingolipids or compounds containing alkyl groups. Dolichol-cycle intermediates were not detected. Phosphatidylinositol, phosphatidylethanolamine, and phosphatidylcholine were labeled by fatty acids and inositol or ethanolamine, respectively, confirming their de novo synthesis by the parasite. Metabolic labeling with glucosamine and cleavage by phosphatidylinositol-specific phospholipase C provided evidence of the formation ofN-acetyl-glucosaminylphosphatidylinositol, an obligate precursor in the biosynthesis of glycosylphosphatidylinositol membrane anchors of proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Cho :

Choline

EDTA :

ethylenediaminetetraacetic acid

EGTA :

ethyleneglycol-bis-(β-aminoether)-N,N′-tetraacetic acid

EtN :

ethanolamine

Fuc :

fucose

Gal :

galactose

Glc :

glucose

GlcN :

glucosamine

GlcNAc :

N-acetyl glucosamine

HEPES:

N-2-hydroxyethylpiperazinyl-N′-2-ethanesulfonic acid

HPAEC :

high pH anion-exchange chromatography

Man :

mannose

NP-40:

Nonidet P-40

PI:

phosphatidylinositol

PE :

phosphatidylethanolamine

PCho :

phosphatidylcholine

PMSF :

phenylmethylsulfonyl fluoride

TLC :

thin-layer chromatography

TLCK :

tosyllysinechloromethylketone

References

  • Ancelin ML, Vial HJ (1986) Several lines of evidence demonstrating thatPlasmodium falciparum, a parasitic organism, has distinct enzymes for the phosphorylation of choline and ethanolamine. FEBS Lett 202:217–223

    PubMed  Google Scholar 

  • Braun-Breton C, Rosenberry TL, Pereira da Silva L (1988) Induction of the proteolytic activity of a membrane protein inPlasmodium falciparum by phosphatidyl inositol-specific phospholipase C. Nature 332:457–459

    PubMed  Google Scholar 

  • Braun-Breton C, Rosenberry TL, Pereira da Silva LH (1990) Glycolipid anchorage ofPlasmodium falciparum surface antigens. Res Immunol 141:743–755

    PubMed  Google Scholar 

  • Dieckmann-Schuppert A, Hensel J, Schwarz RT (1992a) Studies on the effect of Tunicamycin onPlasmodium falciparum. Biochem Soc Trans 20:184S

    Google Scholar 

  • Dieckmann-Schuppert A, Bender S, Odenthal-Schnittler M, Bause E, Schwarz RT (1992b) Apparent lack of N-Glycosylation in the asexual intraerythrocytic stage ofPlasmodium falciparum. Eur J Biochem (in press)

  • Eardley DD, Koshland ME (1991) Glycosylphosphatidylinositol: a candidate system for interleukin-2 signal transduction. Science 251:78–81

    PubMed  Google Scholar 

  • Field MC, Medina-Acosta E, Cross GAM (1991) Characterization of a glycosylphosphatidylinositol membrane protein anchor precursor inLeishmania mexicana. Mol Biomed Parasitol 48:227–230

    Google Scholar 

  • Frankenburg S, Slutzky GM, Gitler C, Londner MV (1984) Lipid antigens derived from erythrocytes infected withPlasmodium berghei. Z Parasitenkd 70:331–336

    PubMed  Google Scholar 

  • Gerold P, Dieckmann-Schuppert A, Schwarz RT (1991) Glycolipids synthesized by a cell-free system prepared from the malaria parasite,Plasmodium falciparum. Biol Chem Hoppe Seyler 372:661–662

    Google Scholar 

  • Haldar K, Ferguson MAJ, Cross GAM (1985) Acylation of aPlasmodium falciparum merozoite surface antigen viasn-1,2-diacylglycerol. J Biol Chem 260:4969–4974

    PubMed  Google Scholar 

  • Haldar K, Henderson CL, Cross GAM (1986) Identification of the parasite transferrin receptor ofPlasmodium falciparum infected erythrocytes and its acylation via 1,2-diacyl-sn-glycerol. Proc Natl Acad Sci USA 83:8565–8569

    PubMed  Google Scholar 

  • Haldar K, Uyetake L, Ghori N, Elmendorf HG, Li WL (1991) The accumulation and metabolism of a fluorescent ceramide derivative inPlasmodium falciparum-infected erythrocytes. Mol Biochem Parasitol 49:143–156

    PubMed  Google Scholar 

  • Honfland P (1975) Characterization of B and H blood-group active glycosphingolipids from human B erythrocyte membranes. Chem Phys Lipids 15:105–124

    PubMed  Google Scholar 

  • Howard RF, Reese RT (1984) Synthesis of merozoite proteins and glycoproteins synthesized during the schizogony ofPlasmodium falciparum. Mol Biochem Parasitol 10:319–334

    PubMed  Google Scholar 

  • Kates M (1986) Techniques of lipidology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Krakow JL, Doering TL, Masterson WJ, Hart GW, Englund PT (1989) A glycolipid fromTrypanosoma brucei related to the variant surface glycoprotein membrane anchor. Mol Biochem Parasitol 36:263–270

    PubMed  Google Scholar 

  • Lambros C, Vanderberg JP (1979) Synchronization ofPlasmodium falciparum erythrocytic stages in culture. J Parasitol 65:418–420

    PubMed  Google Scholar 

  • Lehle L, Tanner W (1978) Glycosyl transfer from dolichol-phosphate sugars to endogenous and exogenous glycoprotein acceptors in yeast. Eur J Biochem 83:563–570

    PubMed  Google Scholar 

  • Low MG, Saltiel AR (1988) Structural and functional roles of glycosyl-phosphatidylinositol in biological membranes. Science 239:268–275

    PubMed  Google Scholar 

  • Magee AI (1988) Identification and characterization of fatty acid-acylated proteins in cultured cells by radiolabeling. In: Brodbeck U, Bordier C (eds) Post-translational modifications of proteins by lipids. Springer, Berlin Heidelberg New York, pp 59–63

    Google Scholar 

  • Maguire PA, Sherman IW (1990) Phospholipid composition, cholesterol content and cholesterol exchange inPlasmodium falciparum-infected red cells. Mol Biochem Parasitol 38:105–112

    PubMed  Google Scholar 

  • Mayor S, Menon AK (1990) Structural analysis of the glycoinositol phospholipid anchors of membrane proteins. Methods: a Companion to Methods Enzymol 1:297–305

    Google Scholar 

  • Mbaya B, Rigomier D, Edorh G, Karst F, Schrevel J (1990) Isoprenoid metabolism inPlasmodium falciparum during the intraerythrocytic phase of malaria. Biochem Biophys Res Commun 173:849–854

    PubMed  Google Scholar 

  • McDowell W, Schwarz RT (1988) Lipid-mediated protein glycosylation: assembly of lipid-linked oligosaccharides and post-translational oligosaccharide trimming. In: Brodbeck U, Bordier C (eds) Post-translational modifications of proteins by lipids. Springer, Berlin Heidelberg New York, pp 99–118

    Google Scholar 

  • Menon AK, Mayor S, Ferguson MAJ, Duszenko M, Cross GAM (1988) Candidate glycolipid precursor for the glycosyl-phosphatidylinositol membrane anchor ofTrypanosoma brucei variant surface glycoproteins. J Biol Chem 263:1970–1977

    PubMed  Google Scholar 

  • Orlandi PA, Turco SJ (1987) Structure of the lipid moiety of theLeishmania donovani lipophosphoglycan. J Biol Chem 262:10384–10391

    PubMed  Google Scholar 

  • Ramasamy R (1987) Studies on glycoproteins in the human malaria parasitePlasmodium falciparum. Immunol Cell Biol 65:147–152

    PubMed  Google Scholar 

  • Rosen G, Pahlsson P, Londner MV, Westerman ME, Nilson AL (1989) Structural analysis of glycosyl-phosphatidylinositol antigens ofLeishmania major. J Biol Chem 264:9043–9052

    Google Scholar 

  • Schneider P, Ferguson MAJ, McConville MJ, Mehlert A, Homans SW, Bordier C (1990) Structure of the glycosyl-phosphatidylinositol membrane anchor of theLeishmania major promastigote surface protease. J Biol Chem 265:16955–16964

    PubMed  Google Scholar 

  • Schneider WC (1969) Enzymatic preparation of labeled phosphorylcholine, phosphorylethanolamine, cytidine diphosphate choline, deoxycytidine diphosphate choline, cytidine diphosphate ethanolamine, and deoxycytidine-diphosphate ethanolamine. Methods Enzymol 14:684–690

    Google Scholar 

  • Schwarz RT, Riveros-Moreno V, Lockyer MJ, Nicholls SC, Davey LS, Hillman Y, Sandhu JS, Freeman RR, Holder AA (1986) Structural diversity of the major surface antigen ofPlasmodium falciparum merozoites. Mol Cell Biol 6:964–968

    PubMed  Google Scholar 

  • Schwarz RT, Lockyer MJ, Holder AA (1987) Aspects of the post-translational modification of a majorPlasmodium falciparum merozoite surface antigen. In: Chang K-P, Snary D (eds) Hostparasite cellular and molecular interactions. NATO ASI Ser H11:275–279

  • Sherwood JA, Spitalnik SL, Aley SB, Quakyi IA, Howard RJ (1986)Plasmodium falciparum andP. knowlesi: initial identification and characterization of malaria synthesized glycolipids. Exp Parasitol 62:127–141

    PubMed  Google Scholar 

  • Sherwood JA, Spitalnik SL, Suarez SC, Marsh K, Howard RJ (1988)Plasmodium falciparum glycolipid synthesis: constant and variant molecules of isolates and of strains with differing knob and cytoadherence phenotype. J Protozool 35:169–172

    PubMed  Google Scholar 

  • Singh BN, Costello CE, Beach DH (1991) Structures of glycophosphosphingolipids ofTritrichomonas foetus: a novel glycophosphophingolipid. Arch Biochem Biophys 286:409–418

    PubMed  Google Scholar 

  • Sjöberg K, Hosein Z, Wåhlin B, Carlsson J, Wahlgren M, Troye-Blomberg M, Berzins K, Perlman P (1991)Plasmodium falciparum: an invasion inhibitory human monoclonal antibody is directed against a malarial glycolipid antigen. Exp Parasitol 73:317–325

    PubMed  Google Scholar 

  • Striepen B, Tomavo S, Dubremetz JF, Schwarz RT (1991) The “low molecular weight antigen” ofToxoplasma gondii is a family of glycosylphosphatidylinositol lipids. Biol Chem Hoppe Seyler 372:765

    Google Scholar 

  • Stults CLM, Sweeley CC, Macher BA (1989) Glycosphingolipids: structure, biological source, and propecties. Methods Enzymol 179:167–214

    PubMed  Google Scholar 

  • Taverne J, Bate CAW, Playfair JHL (1990) Malaria exoantigens induce TNF, are toxic and are blocked by T-independent antibody. Immunol Lett 25:207–212

    PubMed  Google Scholar 

  • Turco SJ (1988) The lipophosphoglycan ofLeishmania. Parasitol Today 4:255–257

    PubMed  Google Scholar 

  • Udeinya IJ, Dyke K van (1981a) 2-Deoxyglucose: inhibition of parasitemia and of glucosamine incorporation into glycosylated macromolecules, in malarial parasites (Plasmodium falciparum). Pharmacology 23:165–170

    PubMed  Google Scholar 

  • Udeinya IJ, Dyke K van (1981b) Concurrent inhibition by Tunicamycin of glycosylation and parasitermia in malarial parasites (Plasmodium falciparum) cultured in human erythrocytes. Pharmacology 23:171–175

    PubMed  Google Scholar 

  • Vermelho AB, Hogge L, Barreto-Bergter E (1986) Isolation and characterization of a neutral glycosphingolipid from the epimastigote form ofTrypanosoma mega. J Protozool 33:208–231

    PubMed  Google Scholar 

  • Vial H, Ancelin ML (1992) Malarial lipids: an overview. Subcell Biochem (in press)

  • Vial HJ, Thuet MJ, Philippot JR (1982) Phospholipid biosynthesis in synchronousPlasmodium falciparum cultures. J Protozool 29:258–263

    PubMed  Google Scholar 

  • Vial HJ, Thuet MJ, Philippot JR (1984) Cholinephosphotransferase and ethanolaminephosphotransferase activities inPlasmodium knowlesi-infected erythrocytes. Their use as parasite-specific markers. Biochim Biophys Acta 795:372–383

    PubMed  Google Scholar 

  • Wang WT, Safar J, Zopf D (1990) Analysis of inositol by high-performance liquid chromatography. Anal Biochem 188:432–435

    PubMed  Google Scholar 

  • Warren L (1972) The biosynthesis and metabolism of amino sugars and amino sugar-containing heterosaccharides. In: Gottschalk A (ed) Glycoproteins, 2nd edn. Elsevier, Amsterdam, pp 1097–1126

    Google Scholar 

  • WHO (1989) Ninth programme report of the UNDP/World Bank/WHO-TDR. World Health Organization, Geneva

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by grants Schw 296/4-1 and 296/4-2 from the Deutsche Forschungsgemeinschaft, by the British-German Academic Research Collaboration (ARC) Program of the German Academic Exchange Service (DAAD), by the Fonds der Chemischen Industrie, by the Hessisches Ministerium für Wissenschaft und Kunst, and by the P.E. Kempes Foundation, Marburg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dieckmann-Schuppert, A., Bender, S., Holder, A.A. et al. Labeling and initial characterization of polar lipids in cultures ofPlasmodium falciparum . Parasitol Res 78, 416–422 (1992). https://doi.org/10.1007/BF00931698

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00931698

Keywords

Navigation