Advertisement

Parasitology Research

, Volume 75, Issue 7, pp 522–527 | Cite as

A stereological study of the differentiation process inTrypanosoma cruzi

  • M. J. Soares
  • T. Souto-Padrón
  • M. C. Bonaldo
  • S. Goldenberg
  • W. de Souza
Original Investigations

Abstract

When epimastigote forms ofTrypanosoma cruzi grown in a rich medium (LIT) are transferred to a simple, chemically defined medium (TAU3AAG, containing Ca2+, Mg2+, K+, Na+,l-proline,l-glutamate, andl-aspartate in phosphate buffer, they transform into trypomastigote forms. Morphometric analysis of transmission electron micrographs of thin sections of parasites collected at different steps of the transformation process showed that no changes occurred in the volume density of mitochondria and cytoplasmic vacuoles. However, a significant increase in the volume density of the kinetoplast DNA network as well as the lipid inclusions and a decrease in that of the reservosome (a special type of endosome) was observed. These observations suggest that during differentiation,T. cruzi accumulates lipids and uses molecules contained in the reservosome as its main energy source.

Keywords

Lipid Thin Section Differentiation Process Morphometric Analysis Transformation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Böhringer S, Hecker H (1974) Quantitative ultrastructural differences between strains of theTrypanosoma brucei subgroup during transformation in blood. J Protozool 21:694–698Google Scholar
  2. Böhringer S, Hecker H (1975) Quantitative ultrastructural investigation of the life cycle ofTrypanosoma brucei: morphometric study. J Protozool 22:463–467Google Scholar
  3. Bonaldo MC, Souto-Padron T, De Souza W, Goldenberg S (1988) Cell substrate adhesion duringTrypanosoma cruzi differentiation. J Cell Biol 106:1349–1359Google Scholar
  4. Brener Z (1973) Biology ofTrypanosoma cruzi. Annu Rev Microbiol 27:347–382Google Scholar
  5. Bretana A, O'Daly JA (1976) Uptake of fetal proteins byTrypanosoma cruzi. Immunofluorescence and ultrastructural studies. Int J Parasitol 6:379–386Google Scholar
  6. Contreras VT, Salles JM, Thomas N, Morel CM, Goldenberg S (1985) In vitro differentiation ofTrypanosoma cruzi under chemically defined conditions. Mol Biochem Parasitol 16:315–327Google Scholar
  7. De Souza W (1984) Cell biology ofTrypanosoma cruzi. Int Rev Cytol 86:197–285Google Scholar
  8. De Souza W (1984) Cell biology ofTrypanosoma cruzi. Int Rev Cytol 86:197–285Google Scholar
  9. De Souza W, Carvalho TU, Benchimol M, Chiari E (1978)Trypanosoma cruzi: ultrastructural, cytochemical and freeze-fracture studies of protein uptake. Exp Parasitol 45:101–115Google Scholar
  10. Dvorak JA, Hall TE, Crane MJ, Engel JC, McDaniel JP, Urleges R (1982)Trypanosoma cruzi: flow cytometric analysis: I. Analysis of total DNA/organism by means of mithramycin-induced fluorescence. J Protozol 29:430–437Google Scholar
  11. Forbes MS, Plantholt BA, Sperelakis N (1977) Cytochemical staining procedures selective for sarcotubular systems of muscle: modifications and applications. J Ultrastruct Res 60:306–327Google Scholar
  12. Goldenberg S, Contreras VT, Bonaldo MC, Salles JM, Lima Franco MPA, Lafaille J, Gonzales-Perdomo M, Lins J, Morel CM (1987) In vitro differentiating systems for the study of differential gene expression duringTrypanosoma cruzi development. In: Molecular strategies of parasitic invasion. Alan & Liss, New York, pp 203–212Google Scholar
  13. Gutteridge WE, Rogerson GW (1979) Biochemical aspects of the biology ofTrypanosoma cruzi. In: Lumsden WHR, Evans DA (eds) Biology of Kinetoplastida, Vol 2. Academic Press, London New York, pp 619–652Google Scholar
  14. Soares MJ, De Souza W (1987) Ultrastructural visualization of lipids in trypanosomatids. J Protozool 34:199–203Google Scholar
  15. Soares MJ, De Souza W (1988) Cytoplasmic organelles of trypanosomatids: a cytochemical and stereological study. J Submicrosc Cytol Pathol 20:349–363Google Scholar
  16. Weibel ER (1969) Stereological principles for morphometry in electron microscopic cytology. Int Rev Cytol 26:235–302Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • M. J. Soares
    • 1
    • 2
    • 3
  • T. Souto-Padrón
    • 1
    • 2
  • M. C. Bonaldo
    • 4
  • S. Goldenberg
    • 4
  • W. de Souza
    • 1
    • 2
  1. 1.Laboratório de Ultraestrutura Cellular e Microscopia Eletrônica, Instituto de Biofísica Carlos Chagas FilhoUniversidade Federal do Rio de JaneiroRio de JaneiroBrasil
  2. 2.Laboratório de Imunopatologia Keizo Azami (LIKA)Universidade Federal de PernambucoRecifeBrasil
  3. 3.Departamento de Ultraestrutura e Biologia CellularInstituto Oswaldo CruzRio de JaneiroBrasil
  4. 4.Departamento de Bioquímica e Biologia MolecularInstituto Oswaldo CruzRio de JaneiroBrasil

Personalised recommendations