Production of L-serine by the methanol utilizing bacterium, Pseudomonas 3ab

  • Hartmut Keune
  • Hermann Sahm
  • Fritz Wagner
Industrial Microbiology

Summary

A bacterium capable of growth on methanol and some organic acids as sole source of carbon and energy has been isolated and designated Pseudomonas 3ab. This facultative methylotrophic organism apparently utilizes the serine pathway of formaldehyde fixation.

When methanol was used as the sole carbon source for growth, L-serine production by Pseudomonas 3ab occurred upon the addition of glycine and methanol at the end of the exponential growth phase. The maximum yield of L-serine (4.7 g/l) was obtained when 20 g/l glycine and 8 g/l methanol were added and the pH of the culture medium was changed to 8.5.

Although Pseudomonas 3ab is unable to grow on L-serine or glycine, it is very active in decomposing these amino acids. The degradation of L-serine and glycine has been shown to be pH-dependent with a minimum at pH 8.5–9.0.

Keywords

Methanol Formaldehyde Glycine Carbon Source Serine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amano, Y., Sawada, H., Takada, N., Terui, G. (1975). J. Ferment. Technol.53, 315–326Google Scholar
  2. Anthony, C., Zatman, L.J. (1964). Biochem. J.92, 614–621Google Scholar
  3. Bray, G.A. (1960). Anal. Biochem.1, 279–285Google Scholar
  4. Chalfan, Y., Mateles, R.I. (1972). Appl. Microbiol.23, 135–140Google Scholar
  5. Chen, M.S., Schirch, L. (1973). J. Biol. Chem.248, 7979–7984Google Scholar
  6. Dunstan, P.M., Anthony, C., Drabble, W.T. (1972). Biochem. J.128, 107–115Google Scholar
  7. Halvorson, H. (1972). Can. J. Microbiol.18, 1647–1650Google Scholar
  8. Harder, W., Quayle, J.R. (1971). Biochem. J.121, 763–769Google Scholar
  9. Heptinstall, J., Quayle, J.R. (1970). Biochem. J.117, 563–572Google Scholar
  10. Jayasuria, G.C.N. (1955). J. Gen. Microbiol.12, 419–428Google Scholar
  11. Kochi, H., Kikuchi, G. (1974). J. Biochem.75, 1113–1127Google Scholar
  12. Kotani, Y., Araki, K., Nakayama, K. (1974). J. Agr. Chem. Soc. Jap.48, 131–136Google Scholar
  13. Kubota, K., Shiro, T. (1967). Jap. patent No. 42/15102Google Scholar
  14. Lawrence, A.J., Kemp, M.B., Quayle, J.R. (1970). Biochem. J.116, 631–639Google Scholar
  15. Levine, D.W., Cooney, C.L. (1973). Appl. Microbiol.26, 982–990Google Scholar
  16. Lowry, O.H., Rosenbrough, N.J., Farr, A.L., Randall, R.J. (1951). J. Biol. Chem.193, 265–275Google Scholar
  17. Malmstadt, H.V., Hadjiioannou, T.P. (1963). Anal. Chem.35, 14–16Google Scholar
  18. Nakayama, K., Kase, H. (1968). Jap. patent No. 25529-68Google Scholar
  19. Nishio, N., Yano, T., Kamikubo, T. (1975). Agr. Biol. Chem.39, 21–27Google Scholar
  20. Oki, T., Kitai, A. (1974). Process Biochem.11, 31–32Google Scholar
  21. Pataki, G. (1966). Dünnschichtchromatographie. Berlin: Walter de GruyterGoogle Scholar
  22. Peel, D., Quayle, J.R. (1961). Biochem.J.81, 465–469Google Scholar
  23. Quayle, J.R. (1972). The metabolism of one-carbon compounds in microorganisms. In: Advances in Microbial Physiology, A.H. Rose, D.W. Tempest, pp. 119–203. London, New York: Academic PressGoogle Scholar
  24. Sahm, H., Wagner, F. (1975). Eur. J. Appl. Microbiol.1, 147–158Google Scholar
  25. Schirch, L., Diller, A. (1971). J. Biol. Chem.246, 3961–3966Google Scholar
  26. Sperl, G.T., Forrest, H.S., Gibson, D.T. (1974). J. Bact.118, 541–550Google Scholar
  27. Toraya, Y., Yong Smith, B., Tanaka, A., Fukui, S. (1975). Appl. Microbiol.30, 477–479Google Scholar
  28. Ulane, R., Ogur, M. (1972). J. Bact.109, 34–43Google Scholar
  29. Wissing, F. (1974). J. Bact.117, 1289–1294Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Hartmut Keune
    • 1
  • Hermann Sahm
    • 1
  • Fritz Wagner
    • 1
  1. 1.Lehrstuhl für Biochemie and Biotechnologie der TechnischenUniversität Braunschweig and Gesellschaft für Molekularbiologische Forschung mbHBraunschweig-StöckheimGermany

Personalised recommendations