Influence of complex formation on the radiolysis of aminothiols

  • S. A. Grachev
  • L. I. Shchelkunova
  • T. S. Burzina
Physical Chemistry


  1. 1.

    The radiolysis of aqueous solutions ofβ-mercaptoethylamine,β-N,N′-dimethylaminoethylmercaptan, and the nickel complexes with general formula (RS)2Ni corresponding to them was investigated.

  2. 2.

    The nature of the dependence of the yield of the decomposition of the ligand [G(-RSH)] on the concentration of the aminothiol, both in deaerated solutions and in oxygen-containing solutions, is identical for both aminothiols in the free form.

  3. 3.

    Aminothiols contained in the nickel complex (RS)2Ni undergo radiation oxidation to disulfides to a far lesser degree than in the free form.

  4. 4.

    From the dependence of the radiolysis of aminothiols on the pH in the absence and in the presence of Ni2+ ions in the interval of pH 5–12, it follows that the protection of aminothiols by nickel ions from radiation oxidation occurs only in the case of formation of a complex.



Oxidation Radiation Nickel Aqueous Solution Disulfide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    W. O. Foye, J. Pharm. Sci.,58, 283 (1969).Google Scholar
  2. 2.
    A. Al-Thannon, R. M. Peterson, and C. N. Trumbore, J. Phys. Chem.,72, 2395 (1968).Google Scholar
  3. 3.
    V. G. Wilkening, M. Zal, M. Arends, and D. A. Armstrong, J. Phys. Chem.,72, 185 (1968).Google Scholar
  4. 4.
    J. E. Packer and R. V. Winchester, Canad. J. Chem.,48, 417 (1970).Google Scholar
  5. 5.
    J. P. Barton, J. E. Packer, and R. J. Sims, J. Chem. Soc. Perkin Trans.,II, 1547 (1973).Google Scholar
  6. 6.
    B. Shapiro and L. Eldjarn, Radiation Res.,3, 255 (1955).Google Scholar
  7. 7.
    Z. M. Bacq, Chemical Protection from Ionizing Radiation [Russian translation], Atomizdat (1968).Google Scholar
  8. 8.
    R. A. Luse, Radiation Res.,31, 669 (1967).Google Scholar
  9. 9.
    J. W. Hunt and A. B. Rabins, Energy Transfer in Radiation Processes, G. O. Phillips (editor), Elsevier, Amsterdam (1966), p. 143.Google Scholar
  10. 10.
    B. B. Singh and M. G. Ormerod, Intern. J. Radiat. Biol.,10, 369 (1966).Google Scholar
  11. 11.
    S. A. Grachev, L. I. Shchelkunova, Yu. A. Makashev, and T. S. Burzina, Zh. Obshch. Khim.,45, 2141 (1975).Google Scholar
  12. 12.
    S. A. Grachev, L. I. Shchelkunova, Yu. A. Makashev, and F. Ya. Kul'ba, Zh. Neorgan. Khim.,16, 198 (1971).Google Scholar
  13. 13.
    S. A. Grachev, I. I. Shchelkunova, and Yu. A. Makashev, Zh. Neorgan. Khim.,17, 1364 (1972).Google Scholar
  14. 14.
    F. Yu. Rachinskii and N. M. Slavachevskaya, The Chemistry of Aminothiols [in Russian], Khimiya (1965).Google Scholar
  15. 15.
    G. L. Ellman, Arch. Biochem. Biophys.,82, 70 (1959).Google Scholar
  16. 16.
    J. Lati and D. Meyerstein, Inorgan. Chem.,11, 2833 (1972).Google Scholar
  17. 17.
    A K. Pikaev, The Solvated Electron in Radiation Chemistry [in Russian], Nauka (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • S. A. Grachev
    • 1
  • L. I. Shchelkunova
    • 1
  • T. S. Burzina
    • 1
  1. 1.B. P. Konstantinov Leningrad Institute of Nuclear PhysicsAcademy of Sciences of the USSRGatchina

Personalised recommendations