Origins of life

, Volume 9, Issue 1, pp 17–25 | Cite as

Quartz fibers as templates for biopolymers

  • Clifford Frondel


The polymerization of silica in water solution to form quartz fibers proceeds by a dehydration process, analogous to condensation polymerization in organic high-polymers, in which monomeric Si(OH)4 groups unite through Si−O−Si bonds with the elimination of H2O. The resulting fibers are structurally polar along the direction of elongation, are enantiomorphous, and generally shown stereospecific twisting around the direction of elongation. In these regards the fibers are analogues of biopolymers such as RNA and DNA. Quartz also possesses specific adsorptive relations to a wide range of organic substances including monomer amino acids, short-chain polypeptides, and proteins. These involve hydrogen-bonding between (OH) or silanoi groups on the surface of the quartz with active side-groups on the organic molecules and in part are epitaxial through dimensional coincidences in the interface.

Geochemical evidence indicates that quartz was deposited in the early Precambrian ocean either by direct crystallization from seawater or by recrystallization of amorphous silica. What is of interest is the possible role of quartz fibers as a template and co-polymer in the passage of biomonomers in the pre-biotic ocean to the long-chain biopolymers such as nucleic acids and proteins that are involved in life processes.


Crystallization Quartz Geochemistry Recrystallization Polypeptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. [1]
    Bernal, J. D.: 1951The Physical Basis of Life, Routledge and Kegan Paul, London, pp. 34–37.Google Scholar
  2. [2]
    Orgel, L. E.: 1973,The Origins of Life, John Wiley and Sons, N.Y.: Kenyon, D. H. and Steinman, G.: 1969,Biochemical Predestination, McGraw-Hill, N.Y., pp. 214, 245; Degens, E. T. and Matheja, J.: 1971,Prebiotic and Biochemical Evol. (Kimball, A. O. and Oró, J., eds.), American Elsevier, N.Y., p. 39; Paecht-Horowitz, M., Breger, J. O., and Katchalsky, A.: 1970,Nature 228, 636; Weiss, A.: 1969, in G. Eglinton and M. T. J. Murphy (eds.),Organic Geochemistry, Springer Verlag, N.Y., Ch. 31, p. 739.Google Scholar
  3. [3]
    Wald, G.: 1957,Annals N.Y. Acad. Sci. 69, 352; Harada, K.: 1971, in R. Buvet and C. Ponnamperuma (eds.),Chemical Evolution and the Origin of Life, Elsevier,. N.Y., p. 71.Google Scholar
  4. [4]
    Neuman, W. F. and Neuman, M. W.: 1973, in I. Zipkin (ed.),Biological Mineralization, John Wiley and Sons, N.Y., p. 3; Bachra, B. N.,idem, p. 845; Gebhardt, M. and Münzenberg, K. J.: 1972,Int. Sympos. on Problems in Biomineralization, Mainz, 1970, pp. 6, 66.Google Scholar
  5. [5]
    Hurd, C. B.: 1938,Chem. Revs. 22, 40; Carman, P. C.: 1940,Trans. Faraday Soc. 36, 964; Iler, R. K.: 1955,The Colloid Chemistry of Silica and Silicates, Cornell Univ. Press, Ithaca, N.Y.; Greer, R. T.: 1971,Scanning Electron Microscopy, 4th Ann. SEM Sympos., Chicago, Ill., p. 153; Acker, E. G.: 1970,J. Coll. Interface Sci. 32, 53.Google Scholar
  6. [6]
    Summaries of the structure, crystallography and properties of quartz are given by Frondel, C.: 1962,Dana's System of Mineralogy, Vol.3, Silica Minerals, John Wiley and Sons, N.Y.; Sosman, R. B.: 1963,The Phases of Silica, Rutgers, Univ. Press; Bragg, W. L., Claringbull, G. F., and Taylor, W. H.: 1965,Crystal Structure of Minerals, Cornell Univ. Press, N.Y.; Flörke, O. W.: 1967,Fortschr. Min. 44, 181.Google Scholar
  7. [7]
    A summary description of the polar orientation, twisting, and other characters of quartz fibers is given by Frondel, C.: 1978,Amer. /Min. 63, 17. Broader reviews of fibrous quartz are given by Braitsch, O.: 1957,Heidelberg Beitr. Min. Petrol. 5, 331 and Frondel, Ref. 6.Google Scholar
  8. [8]
    Vide Tanford, C.: 1973,The Hydrophobic Effect Wiley-Interscience, N.Y.Google Scholar
  9. [10]
    Iler, R. K.: 1952,J. Phys. Chem. 56, 675; Stöber, W.: 1956,Koll. Zs. 145, 17; Seifert, H.: 1964,Beitr. Silikose-Forsch 82, 1p Stöber, W. and Brieger, H.: 1968,Arch. Envir. Health 16, 706; Langer, K. and Flörke, O. W.: 1974,Fortschr. Min. 52, 17.Google Scholar
  10. [11]
    Hench, L. L.: 1972, in B. Finlayson, L. H. Smith (eds.),Urolithiasis: Physical Aspects, Proc., Nat. Acad. Sci., Washington, D.C., p. 203; Sifert, H. inCrystal Growth, Peiser, H. S. (ed.), 1967, Pergamon Press, N.Y., Paper F7, p. 543; Selfert, K. F.: 1960,Zeits, Krist. 114, 287, 361; Kuehn, L.: 1968,Naturwiss. 55, 176; Seifert, H.: 1959,Naturwiss,8, 261; Seifert, H.: 1959,Third Int. Congr. Reactivity of Solids, Madrid, Sect, IV 3, 93; Willems, J.: 1954.Naturwiss.41, 302; Seifert, H. and Kuehn, L.: 1962,Naturwiss,49, 337; Borchert-Ott, W.: 1968,Neues Jahrb. Min., Mh. 241; Müller-Buschbaum, B.: 1965,Koll.-Zs,205, 46; Borchert-Ott, W.: 1966,Chem.-Ing.-Techn. 38, 102.Google Scholar
  11. [12]
    Seifert, H. and Borchert-Ott, J.: 1965,Zeits. Krist. 122, 206.Google Scholar
  12. [13]
    Kleber, W., Ickert, L., and Völlstadt, H.: 1963,Zeits. Phys. Chem. 222, 285. See also Kleber, W. and Meyer, K.: 1958,Zeits, anorg. Chem. 296, 164; Kleber, W. and Reinhold, R.: 1960,Zeits. Krist.114, 410.Google Scholar
  13. [14]
    Review by Bonner, W. A.: 1972, in C. Ponnamperuma (ed.),Exobiology, North Holland, Amsterdam, p. 192; Bonner, W. A., Kavasmaneck, P. R., Martin, F. S., and Flores, J. J.: 1974,Science 186, 143.Google Scholar
  14. [15]
    King, E. J.: 1947,Occupat. Med. 4, 26; King, E. J., Rogers, N., Gilchrist, M., and Nagelschmidt, C.: 1945,J. Path. Aact. 57, 491.Google Scholar
  15. [16]
    Kamb, B.: 1965,Science 148, 232; Cooper, J. F. and Dunning, G. E.: 1972,Amer. Min. 57, 1494.Google Scholar
  16. [17]
    Kornberg, A.: 1959, Harvey Lectures, Ser. 53, p. 83 andSci. Amer. 219, No. 4, p. 64, 1968.Google Scholar
  17. [19]
    Soret, C.: 1889,Arch. Sci. Phys. Nat. Genève 7, 80 andZeits. Krist. 30, 472, 1899; Kipping, F. S. and Pope, W. J.: 1888,Nature 59, 53 andZeits. Krist. 30, 472, 1899; Landolt, H.: 1896,Ber. deutsch. Chem. Ges. 29, 2404; Jungfleisch, E.: 1884,Bull. Soc. Franc. 41, 222; Havinga, E.: 1954,Biochim. Biophys. Acta 13, 171; Johnsen, A.: 1907,Jahrb. Min., Beil.-Bd. 23, 305.Google Scholar
  18. [20]
    Rogacheva, E. D.: 1969, N. N. Sheftal (ed.),Growth of Crystals 7, 173; Rogacheva, E. D. and Belyustin, A. V.,ibid.,5B, 38, 1968. The possible role of optically active dust in seeding was first noted by Kipping, F. S. and Pope, W. J.: 1909,J. Chem. Soc. London 95, 105.Google Scholar
  19. [21]
    Green, B. S. and Heller, L.: 1974,Science 185, 525; Read, J.: 1953,Nature 171, 843.Google Scholar
  20. [23]
    Holland, H. D.: 1972,Geochim. Cosmochim. Acta 36, 637; Schopf, J. W. in Ponnamperuma, C., Ref. 14, Ch. 2. p. 16; Govett, G. J. S.: 1966,Bull. Geol. Soc. Amer. 77, 1191; Ponnamperuma, C. (ed.): 1977,Chemical Evolution of the Early Precambrian, Academic Press, N. Y.Google Scholar
  21. [24]
    Wollast, R.: 1974, in E. D. Goldberg (ed.),The Sea 5, 359; Heath, G. R.: 1974,Soc. Econ. Paleontol. Min., Spec. Publ.20, 77.Google Scholar
  22. [25]
    Garrels, R. M. and Mackenzie, F. T.: 1971,Evolution of Sedimentary Rocks, W. W. Norton, N. Y.; Wollast, R., Ref. 24.Google Scholar
  23. [26]
    Maynard, J. B.: 1975,Amer. J. Sci. 275, 1028 (1975); Siever, R. and Woodford, N.: 1973,Geochim. Cosmochim. Acta 37, 1851.Google Scholar
  24. [27]
    Mackenzie, F. T. and Gees, R.: 1971,Science 173, 533. On the solubility of amorphous silica and the various crystalline polymorphs see H. L. Barnes (ed.): 1972,Geochemistry of Hydrothermal Ore Deposits, Holt, Rinehart and Winston, Inc., N. Y., p. 388.Google Scholar
  25. [28]
    The occurrences include lagoonal sediments (Giresse, P.: 1968,C. R. Acad. Sci. Paris 267, 145); evaporites (Demangeon, P.: 1966,Bull. Soc. Min. Franc. 89, 484; Saboureau-Rosset, C.: 1970,C.R. Acad. Sci. Paris 270, 2891; Dreizler, I.: 1962,Heidelberg Beitr. Min. Petrol. 8, 323; Brownell, G. M.: 1942,Univ. Toronto Stud., Geol. Ser., No. 47, 7; Grim, W. D.: 1962,Erdöl and Kohle-Erdgas-Petrochem. 15, 880); the duricrusts of weathering profiles (Goudie, A.: 1973,Duricrusts in Tropical and Subtropical Landscapes, Clarendon Press, Oxford); brown coal (Leskevich, I. E.: 1959,C.R. Acad. Sci. U.S.S.R. 124, 575); geodal crusts in the ground water circulation (Lund, E. H.: 1960,Amer. Min. 45, 1304 and Frondel, Ref. 7); alkali lake bed sediments (Hay, R. L.: 1968,Heidelberg Beitr. Min. Petrol. 17, 255 and Eugster, H. P.: 1969,Heidelberg Beitr. Min. Petrol. 22, 1); living vegetative tissue (Wilding, L. P. and Drees, L. R.: 1974,Clays and Clay Min. 22, 295).Google Scholar
  26. [29]
    Harder, W. and Flehmig, W.: 1967,Naturwiss. 54, 140; Harder, W. and Menschel, G.: 1967,Naturwiss. 54, 561.Google Scholar
  27. [30]
    Gross, G. A.: 1972,Sediment. Geol. 7, 241; Govett, G. J. S., Ref. 23.Google Scholar
  28. [31]
    Mackenzie, F. T. and Gees, R.,Ref. 27.Google Scholar
  29. [32]
    Corwin, J. F., Harzog, A. H., Owen, G. E., Yalman, R. G., and Swinnerton, A. C.: 1953,J. Amer. Chem. Soc. 75, 2933; Campbell, A. S. and Fyfe, W. S.: 1960,Amer. Min. 45, 464; White, J. F. and Corwin, J. F.: 1961,Amer. Min. 46, 112; Fyfe, W. S. and McKay, A. S.: 1962,Amer. Min. 47, 83; Heydemann, A.: 1964,Heidelberg Beitr. Min. Petrol. 10, 242; Mizutani, S.: 1966,Jour. Earth Sci., Nagoya Univ. 14, 56; Ernst, W. G. and Calvert, S. E.:1969,Amer. Jour. Sci. 267A, 114; Betterman, P. and Liebau, F.: 1975,Heidelberg Beitr. Min. Petrol. 53, 25.Google Scholar
  30. [33]
    Mizutani, S.: 1970,Sedimentology 15, 419; Murata, K. J. and Larson, R. R.: 1975,Jour. Res. U.S. Geol. Surv. 3, 553.Google Scholar
  31. [34]
    Oehler, J. H.: 1976,Bull. Geol. Soc. Amer. 87, 1143.Google Scholar

Copyright information

© D. Reidel Publishing Company 1978

Authors and Affiliations

  • Clifford Frondel
    • 1
  1. 1.Dept. of Geological SciencesHarvard UniversityCambridge

Personalised recommendations