Zeitschrift für Parasitenkunde

, Volume 72, Issue 3, pp 313–322 | Cite as

The establishment ofPlasmodium berghei in mosquitoes of a refractory and a susceptible line ofAnopheles atroparvus

  • J. F. Sluiters
  • P. E. Visser
  • H. J. van der Kaay
Original Investigations

Abstract

The events between the ingestion ofPlasmodium berghei-infected mouse blood and the establishment of the ookinetes in the epithelium of the midgut in refractory (R) and susceptible (S)Anopheles atroparvus are described. Simultaneously fed, fully engorged female mosquitoes were randomly assigned to dissection at 22, 28, 32, 48 h and 10 days (controls) after the infective feed (post-infection: p.i.). Serial transverse sections of 6 μm were cut. Every 10th section was studied. The maturation of ookinetes was monitored at 16, 19 and 22 h p.i. The infections in R and S mosquitoes developed similarly with regard to the maturation of ookinetes and the number of mature ookinetes in the lumen of the midgut. The semiquantitative evaluation of the envelopment of the food bolus by the peritrophic layer showed that this layer cannot function as a physical barrier against migrating ookinetes. In the midgut epithelium the number of ookinetes decreased significantly with time in both R and S mosquitoes, but a similar number of penetrations was recorded for both types of mosquito. In S mosquitoes maximal 1% of the ookinetes present in the midgut formed an oocyst. In both R and S mosquitoes a substantial loss of parasites was found, first in the lumen of the midgut and second after penetration of the midgut epithelium by the mature ookinetes. Relatively few parasites develop into oocysts in S, but hardly any do so in R individuals. The factors in control of refractoriness are likely to operate on early oocyst development.

Keywords

Transverse Section Physical Barrier Substantial Loss Susceptible Line Female Mosquito 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson VL, McLean RA (1974) Design of experiments. Dekker, New YorkGoogle Scholar
  2. Bignell DE (1981) Comments on functions of the peritrophic membrane in haematophagous insects. In: Langley PA (ed) Digestion in haematophagous arthropods. Workshop Proceedings, EMOP 7. Parasitology 82: 95–97Google Scholar
  3. Bliss CI (1967) Statistics in Biology, vol I. McGraw-Hill, New YorkGoogle Scholar
  4. Carter R, Gwadz RW, Green I (1979)Plasmodium gallinaceum: transmission-blocking immunity in chickens II. The effect of antigamete antibodiesin vitro andin vivo and their elaboration during infection. Exp Parasitol 47:194–208Google Scholar
  5. Curtis CF, Graves PM (1983) Genetic variation in the ability of insects to transmit filariae, trypanosomes, and malarial parasites In: Harris KF (ed) Current topics in vector research, vol I. Praeger, New York, p 31Google Scholar
  6. Davies EE (1974) Ultrastructural studies on the early ookinete stage ofPlasmodium berghei berghei and its transformation into an oocyst. Ann Trop Med Parasitol 68:283–290Google Scholar
  7. Eyles DE (1952a) Studies onPlasmodium gallinaceum II. Factors in the blood of the vertebrate host influencing mosquito infection. Am J Hyg 55:276–290Google Scholar
  8. Eyles DE (1952b) Studies onPlasmodium gallinaceum III. Factors associated with the malaria infection in the vertebrate host which influence the degree of infection in the mosquito. Am J Hyg 55:386–391Google Scholar
  9. Freyvogel TA (1966) Shape, movement in situ and locomotion of plasmodial ookinetes. Acta Trop 23:201–222Google Scholar
  10. Freyvogel TA (1980) A propos des relations hôte/parasites entre moustiques et plasmodium. Cah ORSTOM sér Ent méd et Parasitol 18:149–186Google Scholar
  11. Freyvogel TA, Jaquet C (1965) The prerequisites for the formation of a peritrophic membrane in Culicidae females. Acta Trop 22:148–154Google Scholar
  12. Freyvogel TA, Stäubli W (1965) The formation of the peritrophic membrane in Culicidae. Acta Trop 22:118–147Google Scholar
  13. Gass RF (1977) Influences of blood digestion on the development ofPlasmodium gallinaceum (Brumpt) in the midgut ofAedes aegypti (L). Acta Trop 34:127–140Google Scholar
  14. Gass RF (1979) The ultrastructure of culturedPlasmodium gallinaceum ookinetes: a comparison of intact stages with forms damaged by extracts from blood fed, susceptibleAedes aegypti. Acta Trop 36:323–334Google Scholar
  15. Gass RF Yeates RA (1979) In vitro damage of cultured ookinetes ofPlasmodium gallinaceum by digestive proteinases from susceptibleAedes aegypti. Acta Trop 36:243–252Google Scholar
  16. Janse CJ, Mons B, Rouwenhorst RJ, Van der Klooster PFJ, Overdulve JP, Van der Kaay HJ (1985a)In vitro formation of ookinetes and functional maturity ofPlasmodium berghei gametocytes. Parasitology 91:19–29Google Scholar
  17. Janse CJ, Rouwenhorst RJ, Van der Klooster PFJ, Van der Kaay HJ, Overdulve JP (1985b) Development ofPlasmodium berghei ookinetes in the midgut ofAnopheles atroparvus mosquitoes andin vitro. Parasitology 91:219–225Google Scholar
  18. Landau I, Miltgen F, Boulard Y, Chabaud AG, Baccam D (1979) Etudes sur les gamétocytes desPlasmodium du groupe “vivax”: morphologie, évolution prise par les Anophèles et infectivité des microgamétocytes dePlasmodium yoelii. Ann Parasit 54:145–161Google Scholar
  19. Murphy FA, Whitfield SG, Sudia WD, Chamberlain RW (1975) Interactions of vector with vertebrate pathogenic viruses In: Maramorosch K, Shope RE (eds) Invertebrate immunity. Acad Press, New York, p 25Google Scholar
  20. Orihel TC (1975) The peritrophic membrane: its role as a barrier to infection of the arthropod host. In: Maramorosch K, Shope RE (eds) Invertebrate immunity. Acad Press, New York, p 65Google Scholar
  21. Ponnudurai R, Meuwissen JHETh, Leeuwenberg ADF, Verhave JP, Lensen AHW (1982) The production of mature gametocytes ofPlasmodium falciparum in continuous cultures of different isolates infective to mosquitoes. Trans R Soc Trop Med Hyg 76:242–250Google Scholar
  22. Richards AG, Richards PA (1977) The peritrophic membranes of insects. Ann Rev Entomol 22:219–240Google Scholar
  23. Rosenberg R, Koontz LC (1984)Plasmodium gallinaceum: density dependent limits on infectivity toAedes aegypti. Exp Parasitol 57:234–238Google Scholar
  24. Rosenberg R, Koontz LC, Carter R (1982) Infection ofAedes aegypti with zygotes ofPlasmodium gallinaceum fertilized in vitro. J Parasitol 68: 653–656Google Scholar
  25. Shute PG, Maryon ME (1966) Laboratory technique for the study of malaria. 2nd ed. Churchill, LondonGoogle Scholar
  26. Sinden RE (1978) Cell biology. In: Killick-Kendrick R, Peters W (eds) Rodent malaria. Acad Press, London p 85Google Scholar
  27. Sinden RE (1984) The biology ofPlasmodium in the mosquito. Experientia 40:1330–1343Google Scholar
  28. Sokal RR, Rohlf FJ (1981) Biometry. 2nd ed. Freeman, San FranciscoGoogle Scholar
  29. Stohler H (1957) Analyse des Infektionsverlaufes vonPlasmodium gallinaceum im Darme vonAedes aegypti. Acta Trop 14:302–351Google Scholar
  30. Vanderberg JP, Gwadz RW (1980) The transmission by mosquitoes ofPlasmodia in the laboratory. In: Kreier JP (ed) Malaria. vol 2. Academic Press, New York, p 153Google Scholar
  31. Vanderberg JP, Weiss MM Mack SR (1977)In vitro cultivation of the sporogonic stages ofPlasmodium: a review. Bull WHO 55:377–392Google Scholar
  32. Van der Kaay HJ, Boorsma EG (1977) A susceptible and refractive strain ofAnopheles atroparvus to infection withPlasmodium berghei berghei. Acta Leiden 45:13–19Google Scholar
  33. Wilk MB, Shapiro SS (1968) The joint assessment of normality of several independent samples. Technometrics 10:825–839Google Scholar
  34. Winer BJ (1970) Statistical principles in experimental design. McGraw-Hill, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • J. F. Sluiters
    • 1
  • P. E. Visser
    • 1
  • H. J. van der Kaay
    • 1
  1. 1.Laboratory of ParasitologyState University of LeidenLeidenThe Netherlands

Personalised recommendations