Effects of the anti-lipogenic antibiotic cerulenin on growth and fatty acid composition of n-alkane-utilizingCandida lipolytica

  • Atsuo Tanaka
  • Takeshige Hagihara
  • Yoshiki Nishikawa
  • Masayoshi Mishina
  • Saburo Fukui
Industrial Microbiology

Summary

The effects of cerulenin, an anti-lipogenic antibiotic, on the growth and cellular fatty acid composition ofCandida lipolytica were investigated by changing the chain length of n-alkane, the growth substrate. The antibiotic inhibited almost completely the growth of the yeast on glucose, n-undecane and n-dodecane, but partly that on n-tridecane. The yeast growth on longer alkanes, e.g., from n-tetradecane to n-octadecane, was not affected by this antibiotic, indicating that a chain elongation system and/or intact incorporation system predominantly operate in the formation of cellular fatty acids from such longer chain n-alkanes. Comparison of the fatty acid profiles between the cells grown on n-alkanes of different chain lengths, especially on n-pentadecane, in the presence and absence of cerulenin, supported the supposition that only the de novo synthesis system of the yeast would be affected by the antibiotic, whereas the chain elongation system would not.

Keywords

Alkane Fatty Acid Composition Chain Length Fatty Acid Profile Cellular Fatty Acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Awaya,J., Ohno,T., Ohno,H., Omura,S. (1975). Biochim. Biophys. Acta409, 267–273Google Scholar
  2. Finnerty,W.R., Kallio,R.E. (1964). J. Bacteriol.87, 1261–1265Google Scholar
  3. Fulco,A.J. (1967). J. Biol. Chem.242, 3608–3613Google Scholar
  4. Gill,C.O., Ratledge,C. (1973). J. Gen. Microbiol.78, 337–347Google Scholar
  5. Goldberg, I., Walker,J., Bloch,K. (1973). Antimicrob. Ag. Chemother.3, 549–554Google Scholar
  6. Hug,H., Fiechter,A. (1973). Arch. Mikrobiol.88, 87–96Google Scholar
  7. Klug,M.J., Markovetz,A.J. (1969). Biotech. Bioeng.11, 427–440Google Scholar
  8. Mishina,M., Yanagawa,S., Tanaka,A., Fukui,S. (1973). Agr. Biol. Chem.37, 863–870Google Scholar
  9. Mizuno,M., Shimojima,Y., Iguchi,T., Takeda,I., Senoh,S. (1966). Agr. Biol. Chem.30, 506–510Google Scholar
  10. Nomura,S., Horiuchi,T., Hata,T., Omura,S. (1972a). J. Antibiotics25, 365–368Google Scholar
  11. Nomura,S., Horiuchi,T., Omura,S., Hata,T. (1972b). J. Biochem.71, 783–796Google Scholar
  12. Ohno,T., Kesado,T., Awaya,J., Omura,S. (1974). Biochem. Biophys. Res. Commun.57, 1119–1124Google Scholar
  13. Orme,T.W., McIntyre,J., Lynen,F., Kühn,L., Schweizer,E. (1972). Eur. J. Biochem.24, 407–415Google Scholar
  14. Pirson,W., Schuhmann,L., Lynen,F. (1973). Eur. J. Biochem.36, 16–24Google Scholar
  15. Rattray,J.M.B., Schibeci,A., Kidby,D.K. (1975). Bacteriol. Rev.39, 197–231Google Scholar
  16. Schweizer,E., Bolling,H. (1970). Proc. Natl. Acad. Sci.67, 660–666Google Scholar
  17. Vance,D., Goldberg,I., Mitsuhashi,O., Bloch,K., Omura,S., Nomura,S. (1972). Biochem. Biophys. Res. Commun.48, 649–656Google Scholar
  18. Wagner,F., Kleenman,Th., Zahn,W. (1969). Biotech. Bioeng.11, 393–408Google Scholar
  19. Yanagawa,S., Tanaka,A., Fukui,S. (1972). Agr. Biol. Chem.36, 2129–2134Google Scholar
  20. Yano,I., Furukawa,Y., Kusunose,M. (1971). Eur. J. Biochem.23, 220–228Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Atsuo Tanaka
    • 1
  • Takeshige Hagihara
    • 1
  • Yoshiki Nishikawa
    • 1
  • Masayoshi Mishina
    • 1
  • Saburo Fukui
    • 1
  1. 1.Laboratory of Industrial Biochemistry, Department of Industrial Chemistry, Faculty of EngineeringKyoto University, YoshidaKyotoJapan

Personalised recommendations