Molecular and Cellular Biochemistry

, Volume 140, Issue 1, pp 73–79 | Cite as

Antioxidant properties of dehydrozingerone and curcumin in rat brain homogenates

  • D. V. Rajakumar
  • M. N. A. Rao


The present study investigates the inhibition of lipid peroxidation by dehydrozingerone and curcumin in rat brain homogenates. Both the test compounds inhibited the formation of conjugated dienes and spontaneous lipid peroxidation. These compounds also inhibited lipid peroxidation induced by ferrous ions, ferric-ascorbate and ferric-ADP-ascorbate. In all these cases, curcumin was more active than dehydrozingerone and dl-α-tocopherol.

Key words

curcumin dehydrozingerone lipid peroxidation conjugated dienes antioxidants 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Southern PA, Powis G: Free radicals in medicine. I. Chemical nature and biological reactions. Mayo Clin Proc 63: 381–399, 1988Google Scholar
  2. 2.
    Bondy SC: reactive oxygen species: Relation to aging and neurotoxic damage. Neurotoxicol 13: 87–100, 1992Google Scholar
  3. 3.
    Ames BN: Endogenous oxidative DNA damage, aging and cancer. Free Rad Res Commun 7: 121–128, 1989Google Scholar
  4. 4.
    Halliwell B, Gutteridge JMC, Cross CE: Free radicals antioxidants, and human disease: Where are we now? J Lab Clin Med 119: 598–620, 1992Google Scholar
  5. 5.
    Halliwell B: Antioxidants and the central nervous system: Some fundamental questions. Acta Neurol Scand 129: 23–33, 1989Google Scholar
  6. 6.
    Hunt JV, Dean RT, Wolff SP: Hydroxyl radical production and autoxidative glycosylation. Biochem J 256: 205–212, 1988Google Scholar
  7. 7.
    Esterbauer H, Gebicki J, Puhl H, Jurgens G: The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Rad Biol Med 13: 341–390, 1992Google Scholar
  8. 8.
    Jenner P, Dexter DT, Sian J, Schapira AHV, Marsden CD: Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease. Annals Neurol 32: 582–587, 1992Google Scholar
  9. 9.
    McCall JM and Panetta JA: Traumatic and ischemia/reperfusion injury to the CNS. Annual Rep Med Chem 27: 31–40, 1992Google Scholar
  10. 10.
    Peruche B and Krieglstein J: Mechanisms of drug actions against neuronal damage caused by ischemis — An overview. Prog Neuropharmacol Biol Psych 17: 21–70, 1993.Google Scholar
  11. 11.
    Halliwell B, Gutteridge JMC: Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet 1: 1396–1397, 1984Google Scholar
  12. 12.
    Srimal RC: Curcumin. Drugs Future 12: 331–333 1987Google Scholar
  13. 13.
    Ammon HPT, Wahl MA: Pharmacology of curcumin. Plant Med 57: 1–7, 1991Google Scholar
  14. 14.
    Soudamini KK, Unnikrishnan MC, Soni KB, Kuttan R: Inhibition of lipid peroxidation and cholesterol levels in mice by curcumin. Indian J Physiol Pharmacol 36: 239–234, 1992Google Scholar
  15. 15.
    Kunchandy E, Rao MNA: Effect of curcumin on hydroxyl radical generation through Fenton reaction. Int J Pharm 57: 173–176, 1989Google Scholar
  16. 16.
    Kunchandy E, Rao MNA: Oxygen radical scavenging activity of curcumin. Int J Pharm 58: 237–240, 1990Google Scholar
  17. 17.
    Unnikrishnan MK, Rao MNA: Curcumin inhibits nitrite induced methemoglobin formation. FEBS Lett 301: 195–196, 1992Google Scholar
  18. 18.
    Susan M, Rao MNA: Induction of glutathione S-transferase activity by curcumin in mice. Arznein-Forsch./Drug Res 42: 962–964, 1992Google Scholar
  19. 19.
    Sharma OP: Antioxidant activity of curcumin and related substances. Biochem Pharmacol: 25: 1811–1812, 1976Google Scholar
  20. 20.
    Toda S, Miyase T, Arichi H, Tanizawa H, Takino Y: Natural antioxidants. III. Antioxidative components isolated from rhizome ofCurcuma longa L. Chem Pharm Bull (Tokyo) 33: 1725–1728, 1985Google Scholar
  21. 21.
    Jitoe A, Masuda T, Tengah IGP, Suprata DN, Gara IW, Nakatani N: Antioxidant activity of tropical ginger extracts and analysis of contained curcuminoids. J Agric Food Chem 40: 1337–1340, 1992Google Scholar
  22. 22.
    Sreejayan, Rao MNA: Curcumin inhibits iron-dependant lipid peroxidation. Int J Pharm 100: 93–97, 1993Google Scholar
  23. 23.
    Singh GB, Leach GDH, Atal CK: Antiinflammatory actions of Methyl-and phenyl-3-methoxy-4-hydroxy styryl ketones. Arzneim-Forsch./ Drug Res 37: 435–440, 1987Google Scholar
  24. 24.
    Elias G, Rao MNA: Synthesis and antiinflammatory activity of substituted (E)-4-phenyl-3-buten-2-ones. Eur J Med Chem 23: 379–380, 1988Google Scholar
  25. 25.
    Saldanha LA, Elias G, Rao MNA: Oxygen radical scavenging activity of phenylbutenones and their correlation with antiinflammatory activity. Arzneim-Forsch./Drug Res 40: 89–91, 1990Google Scholar
  26. 26.
    Shivakumar BR, Anandatheerthavarada HK, Ravindranath V: Free radical scavenging systems in developing rat brain. Int J Develop Neurosci 9: 181–195, 1991Google Scholar
  27. 27.
    Braughler JM, Duncan LA, Chase RL: The involvement of iron in lipid peroxidation. J Biol Chem 261: 10282–10289, 1986Google Scholar
  28. 28.
    Buege JA, Aust SD: Microsomal lipid peroxidation. Methods Enzymol LII: 302–310, 1978Google Scholar
  29. 29.
    Cluffi M, Gentilini G, Franchi-Micheli S, Zilletti L: Lipid peroxidation induced “in vivo”: by iron carbohydrate complex in the rat brain cortex. Neurochem Res 16: 43–49, 1991Google Scholar
  30. 30.
    Arnaiz SL, Llesuy S: Oxidative stress in mouse heart by antitumoral drugs: A comparative study of doxorubicin and mitoxantrone. Toxicology 77: 31–38, 1993Google Scholar
  31. 31.
    Gutteridge JMC, Richmond R, Halliwell B: Inhibition of the iron catalyzed formation of hydroxyl radicals from superoxide and lipid peroxidation by desferrioxamine. Biochem J 184: 469–472, 1979Google Scholar
  32. 32.
    Braughler JM, Chase RL, Pregenzer JF: Oxidation of ferrous iron during peroxidation of various lipid substrates. Biochem Biophys Acta 921: 457–464, 1987Google Scholar
  33. 33.
    Koppenol WW, Liebman JF: The oxidizing nature of the hydroxyl radical. A comparison with the ferryl ion (FeO2+). J Phys Chem 88: 99–101, 1984Google Scholar
  34. 34.
    Ryan TP, Aust SD: The role of iron in oxygen mediated toxicities. Crit Rev Toxicol 22: 119–141, 1992Google Scholar
  35. 35.
    Kogurescan K, Watson BD, Busto R, Abe K: Potentiation of lipid peroxides by ischemia in rat brain. Neurochem Res 7: 437–454, 1982Google Scholar
  36. 36.
    Tonnesen HH, Greenhill JV: Studies on curcumin and curcuminoids. XXII: Curcumin as a reducing agent and as a radical scavenger. Int J Pharm 87: 79–87, 1992Google Scholar
  37. 37.
    Conney AH, Lysz T, Ferraro T, Abidi TF, Manchand PS, Laskin JD, Haung M: Inhibitory effect of curcumin and some related dietary compounds on tumor promotion and arachidonic acid metabolism in mouse skin. Adv Enz Regulation 31: 385–396, 1991Google Scholar
  38. 38.
    Graf E: Antioxidant potential of ferulic acid. Free Rad Biol Med 13: 435–448, 1992Google Scholar
  39. 39.
    Cuvelier ME, Richard H, Berset C: Comparison of the antioxidant activity of some acid phenols: Structure activity relationship. Biosci Biotech Biochem 56: 324–325, 1992Google Scholar
  40. 40.
    Burton GW, Doba T, GAve EJ, Hughes L, Lee FL, Prasad L, Ingold KU: Autoxidation of biological molecules 4. Maximizing the antioxidant activity of phenols. J Am Chem Soc 107: 7053–7065, 1985Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • D. V. Rajakumar
    • 1
  • M. N. A. Rao
    • 1
  1. 1.Department of Pharmaceutical ChemistryCollege of Pharmaceutical SciencesManipalIndia

Personalised recommendations