Origins of life

, Volume 10, Issue 4, pp 313–323 | Cite as

Surface solar ultraviolet radiation for paleoatmospheric levels of oxygen and ozone

  • Joel S. Levine


Many investigators have concluded that the level of solar ultraviolet radiation (200–300 nm) reaching the surface was a key parameter in the origin and evolution of life on Earth. The level of solar ultraviolet radiation between 200 and 300 nm is controlled primarily by molecular absorption by ozone, whose presence is trongly coupled to the level of molecular oxygen. In this paper, we present a series of calculations of the solar ultraviolet radiation reaching the surface for oxygen levels ranging from 10−4 present atmospheric level to the present level. The solar spectrum between 200 and 300 mn has been divided into 34 spectral intervals. For each spectral interval, we have calculated the solar ultraviolet radiation reaching the Earth's surface by considering the attenuation of the incoming beam due to ozone and oxygen absorption. A one-dimensional photochemical model of the atmosphere was used for these calculations.


Oxygen Atmosphere Attenuation Organic Chemistry Ozone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackermann, M.: 1971,Mesospheric Models and Related Experiments, D. Reidel Publ. Co., Dordrecht, Holland, p. 149.Google Scholar
  2. Bates, D. R. and Nicolet, M.: 1950,J. Geophys. Res. 55, 301.Google Scholar
  3. Berkner, L. V. and Marshall, L. C.: 1965,J. Atmos. Sci. 22, 225.Google Scholar
  4. Blake, A. J. and Carver, J. H.: 1977,J. Atmos. Sci. 34, 720.Google Scholar
  5. Brinkmann, R. T.: 1969,J. Geophys. Res. 74, 5355.Google Scholar
  6. Chapman, S.: 1930,Mem. Roy. Meteor. Soc. 3, 103.Google Scholar
  7. Crutzen, P. J.: 1970,Quart. J. Roy. Meteor. Soc. 96, 320.Google Scholar
  8. Crutzen, P. J.: 1971,J. Geophys. Res. 76, 7311.Google Scholar
  9. Hart, M. H.: 1970,Icarus 33, 23.Google Scholar
  10. Johnston, H. S.: 1971,Science 173, 517.Google Scholar
  11. Johnston, H. S.: 1975,Rev. Geophys. Space Phys. 13, 637.Google Scholar
  12. Levine, J. S. and Boughner, R. E.: 1979,Icarus 39, 310.Google Scholar
  13. Levine, J. S., Kraemer, D. R., and Kuhn, W. R.: 1977,Icarus 31, 136.Google Scholar
  14. Levine, J. S., Hughes, R. E., Chameides, W. L., and Howell, W. E.: 1979a,Geophys. Res. Letters 6, 557.Google Scholar
  15. Levine, J. S., Hays, P. B., and Walker, J. C. G.: 1979b,Icarus 39, 295.Google Scholar
  16. Levin, J. S., Boughner, R. E., and Smith, K. A.: 1980,Origins of Life 10, 199; also reprinted inLimits of life, edited by C. Ponnamperuma and L. Margulis, D. Reidel Publ. Co., Dordrecht, 1980, pp. 105–119.PubMedGoogle Scholar
  17. Luther, F. M. and Gelinas, R. J.: 1976,J. Geophys. Res. 81, 1125.Google Scholar
  18. Margulis, L., Walker, J. C. G., and Ramber, M.: 1976,Nature 264, 620.Google Scholar
  19. Nicolet, M.: 1975,Rev. Geophys. Space Phys. 13, 593.Google Scholar
  20. Rambler, M., Margulis, L., and Barghoorn, E. S.: 1976,Chemical Evolution and the Precambria, Academic Press, New York, p. 133.Google Scholar
  21. Ratner, M. I. and Walker, J. C. G.: 1972,J. Atmos. Sci. 29, 803.Google Scholar
  22. Rundel, D. R.: 1977,J. Atmos. Sci. 34, 639.Google Scholar
  23. Sagan, C.: 1973,J. Theor. Biol. 39, 195.PubMedGoogle Scholar
  24. Shettle, E. P. and Green A. E. S.: 1974,Appl. Optics 13, 1567.Google Scholar
  25. Towe, K. M.: 1978,Nature 274, 657.Google Scholar
  26. Walker, J. C. G.: 1977,Evolution of the Atmosphere, MacMillan, New York.Google Scholar
  27. Walker, J. C. G.: 1978,Pure Appl. Geophys. 117, 498.Google Scholar

Copyright information

© D. Reidel Publishing Co. 1980

Authors and Affiliations

  • Joel S. Levine
    • 1
  1. 1.Atmospheric Environmental Sciences DivisionNASA Langley Research CenterHamptonUSA

Personalised recommendations