Skip to main content
Log in

Biochemical evidence of the antigenic cell surface heterogeneity ofLeishmania mexicana

  • Original Investigations
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In the present study, an enzymatical and structural analysis ofLeishmania mexicana cell-surface components was carried out, demonstrating that protease and acid phosphatase activities were present at theL. mexicana cell surface. These findings correlate with the expression of the main components detected on the surface ofL. mexicana promastigotes: the 50-kDa component is responsible for the acid phosphatase activity, whereas glycoprotein 65 (gp65) was characterized as the structural polypeptide of the surface protease. Furthermore, the 50- and 65-kDa antigens were found to be structurally different, inasmuch as no homology was observed in their peptide digestion profiles. The results presented in this communication confirm heterogeneity in the expression of the surface components ofL. mexicana promastigotes at both the structural and the biochemical level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbieri CL (1988) Acid phosphatase isoenzyme mapping inLeishmania. Exp Parasitol 67:159–166

    PubMed  Google Scholar 

  • Blackwell JM, Ezekowitz RAB, Roberts MB, Channon JY, Sim RB, Gordon S (1985) Macrophage complement and lectin-like receptors bindLeishmania in the absence of serum. J Exp Med 162:324–331

    PubMed  Google Scholar 

  • Bordier C (1987) The promastigote surface protease ofLeishmania. Parasitol Today 3:151–153

    PubMed  Google Scholar 

  • Bouvier J, Etges R, Bordier C (1987) Identification of the promastigote surface protease in seven species ofLeishmania. Mol Biochem Parasitol 24:73–79

    PubMed  Google Scholar 

  • Button LL, McMaster WR, (1988) Molecular cloning of the major surface antigen ofLeishmania. J Exp Med 167:724–729

    PubMed  Google Scholar 

  • Button LL, Russell DG, Klein HL, Medina-Acosta E, Karess RE, McMaster WR (1989) Genes encoding the major surface glycoprotein inLeishmania are tandemly linked at a single chromosomal locus and are constitutively transcribed. Mol Biochem Parasitol 32:271–284

    PubMed  Google Scholar 

  • Chaudhuri G, Chang KP (1988) Acid protease activity of a major surface membrane glycoprotein (gp63) fromLeishmania mexicana promastigotes. Mol Biochem Parasitol 27:43–52

    PubMed  Google Scholar 

  • Chang KP (1983) Cellular and molecular mechanisms of intracellular symbiosis in leishmaniasis. Int Rev Cytol [Suppl], 14:267–302

    Google Scholar 

  • Colomer-Gould V, Quintao LG, Keithly J, Nogueira N (1985) A common major surface antigen on amastigotes and promastigotes ofLeishmania species. J Exp Med 162:902–916

    PubMed  Google Scholar 

  • Coombs GH (1982) Proteinases ofLeishmania mexicana and other flagellate protozoa. Parasitology 84:149–155

    PubMed  Google Scholar 

  • Etges RJ, Bouvier J, Hoffman R, Bordier C (1985) Evidence that the major surface proteins of threeLeishmania species are structurally related. Mol Biochem Parasitol 14:141–149

    PubMed  Google Scholar 

  • Etges R, Bouvier J, Bordier C (1986) The major surface protein ofLeishmania promastigotes is a protease. J Biol Chem 261:9098–9101

    PubMed  Google Scholar 

  • Fong D, Chang KP (1981) Protease activity of a parasite protozoan.L. mexicana. J Cell Biol 91:43A

    Google Scholar 

  • Gardiner PR, Jaffe CL, Dwyer DM (1984) Identification of cross-reactive promastigote cell surface antigens of someLeishmania stocks by125I labeling and immunoprecipitation. Infect Immun 43:637–643

    Google Scholar 

  • Glew RH, Czuczman MS, Diven WF, Berens RL, Pope MT, Katsoulis DE (1982) Partial purification and characterization of particulate acid phosphatase ofLeishmania donovani promastigotes. Comp Biochem Physiol B 72:581–590

    PubMed  Google Scholar 

  • Gottlieb M, Dwyer DM (1981)Leishmania donovani: surface membrane acid phosphatase activity of promastigotes. Exp Parasitol 52:117–128

    PubMed  Google Scholar 

  • Handman E, Goding JW (1985) TheLeishmania receptor for macrophage is a lipid containing glycoconjugate. EMBO J 4:329–336

    PubMed  Google Scholar 

  • Handman E, McConville MJ, Goding JW (1987) Carbohydrate antigens as possible parasite vaccines. Parasitol Today 8:181–185

    Google Scholar 

  • Hassan HF, Coombs GH (1987) Phosphomonoesterases ofLeishmania mexicana and other flagellates. Mol Biochem Parasitol 23:285–296

    PubMed  Google Scholar 

  • Hernández AG, Arguello C, Ayesta C, Dagger F, Infante RB, Stojanovic D, Dawidowicz K, Riggione F, La Riva G (1981) The surface membrane ofLeishmania. In: Slutzky GM (ed) The biochemistry of parasites. Pergamon, Oxford, pp 47–65

    Google Scholar 

  • Hernández AG, Misle A, Urdaneta J, Dagger F (1987) The effect of tunicamycin onLeishmania braziliensis. Glycosilation of the cell surface components. Mol Biol Rep 12:103–110

    PubMed  Google Scholar 

  • Hernández AG, Payares G, Misle A, Dagger F (1989) The heterogeneity ofLeishmania cell surface antigens. Parasitol Res (in press)

  • Kweider M, Lamesre JP, Darcy F, Kusnierz JP, Capron P, Santoro F (1987) Infectivity ofLeishmania braziliensis promastigotes is dependent on the increasing expression of a 65000-dalton surface antigen. J Immunol 138:229–305

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lischwe MA, Ochs D (1982) A new method for partial peptide mapping usingN-chlorosuccinimide/urea and peptide silver staining in sodium dodecyl sulfate-polyacrylamide gels. Ann Biochem 127:453–457

    Google Scholar 

  • Lovelace JK, Gottlieb M (1986) Comparison of extracellular acid phosphatases from various isolates ofLeishmania. Am J Trop Med Hyg 35:1121–1128

    PubMed  Google Scholar 

  • Markwell MK, Fox GF (1978) Surface iodination of membrane proteins of viruses and eukaryotic cells using iodo-gen (1,2,4,6-tetrachloro-3,6-diphenyl glycoluryl). Biochemistry 17:4807–4817

    PubMed  Google Scholar 

  • McLaughin J, Injeyan HA, Meerovitch E (1976) The subcellular distribution and properties ofCrithidia sp. hydrolases with particular reference to pyrophosphate and orthophosphate monoester phosphohydrolases. Can J Biochem 54:365–381

    PubMed  Google Scholar 

  • Ramirez JL, Guevara P (1987) The ribosomal gene spacer as a tool for the taxonomy ofLeishmania. Mol Biochem Parasitol 22:177–183

    PubMed  Google Scholar 

  • Remaley AT, Das S, Campbell PI, La Rocca GM, Pope MT, Glew R (1985) Characterization ofLeishmania donovani acid phosphatases. J Biol Chem 260:880–886

    PubMed  Google Scholar 

  • Russell DG (1987) The macrophage attachment glycoprotein gp63 is the predominant C3-acceptor site onLeishmania mexicana promastigotes. Eur J Biochem 164:213–221

    PubMed  Google Scholar 

  • Russell DG, Wilhelm H (1986) The involvement of the major surface glycoprotein (gp63) ofLeishmania promastigotes in attachment to macrophages. J Immunol 136:2613–2620

    PubMed  Google Scholar 

  • Russell DG, Wright SD (1988) Complement receptor type 3 (CR3) binds to an Arg-Gly-Asp-containing region of the major surface glycoprotein gp63 ofLeishmania promastigotes. J Exp Med 168:279–292

    PubMed  Google Scholar 

  • Saito K, Suter E (1965) Lysosomal acid hydrolases in mice infected with BCG. J Exp Med 121:727–739

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manenti, S., Kutner, S., Rascon, A. et al. Biochemical evidence of the antigenic cell surface heterogeneity ofLeishmania mexicana . Parasitol Res 76, 301–305 (1990). https://doi.org/10.1007/BF00928183

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00928183

Keywords

Navigation