Advertisement

Molecular and Cellular Biochemistry

, Volume 148, Issue 2, pp 165–181 | Cite as

Structures of small subunit ribosomal RNAsin situ fromEscherichia coli andThermomyces lanuginosus

  • Daniel R. Beniac
  • George Harauz
Article

Abstract

Small ribosomal subunits from the prokaryoteEscherichia coli and the eukaryoteThermomyces lanuginosus were imaged electron spectroscopically, and single particle analysis used to yield three-dimensional reconstructions of the net phosphorus distribution representing the nucleic acid (RNA) backbone. This direct approach showed both ribosomal RNAs to have a three domain structure and other characteristic morphological features. The eukaryotic small ribosomal subunit had a prominent bill present in the head domain, while the prokaryotic subunit had a small vestigial bill. Both ribosomal subunits contaied a thick ‘collar’ central domain which correlates to the site of the evolutionarily conserved ribosomal RNA core, and the location of the majority of ribosomal RNA bases that have been implicated in translation. The reconstruction of the prokaryotic subunit had a prominent protrusion extending from the collar, forming a channel approximately 1.5 nm wide and potentially representing a ‘bridge’ to the large subunit in the intact monosome. The basal domain of the prokaryotic ribosomal subunit was protein free. In this region of the eukaryotic subunit, there were two basal lobes composed of ribosomal RNA, consistent with previous hypotheses that this is a site for the ‘non-conserved core” ribosomal RNA.

Key Words

ribosomal RNA ribosomal subunits electron spectroscopic imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Neefs J-M, van de Peer Y, de Rijk P, Goris A, de Wachter R: Compilation of small ribosomal subunit RNA sequences. Nucleic Acids Res 19:1987–2015, 1991Google Scholar
  2. 2.
    Olsen GJ, Larsen N, Woese CR: The ribosomal RNA database project. Nucleic Acids Res 19:2017–2021, 1991Google Scholar
  3. 3.
    Chiu DKY, Harauz G: A method for inferring probabilistic consensus structure with applications to molecular sequence data. Pattern Recogn 26:643–654, 1993Google Scholar
  4. 4.
    Chiu DKY, Kolodziejczak T: Inferring consensus structure from nucleic acid sequences. CABIOS 7:347–352, 1991.Google Scholar
  5. 5.
    Gutell RR, Weiser B, Woese CR, Noller HF: Comparative anatomy of 16S-like ribosomal RNA. Prog Nucl Acid Res Mol Biol 32: 155–216, 1985Google Scholar
  6. 6.
    Gutell RR, Noller HF, Woese CR: Higher order structure in ribosomal RNA. EMBO J 5:1111–1113, 1986Google Scholar
  7. 7.
    Han K, Kim H-J: Prediction of common folding structures of homologous RNAs. Nucleic Acids Res 21:1251–1257 1993Google Scholar
  8. 8.
    Raué HA, Klootwijk J, Musters W: Evolutionary conservation of structure and function of high molecular weight ribosomal RNA. Prog Biophys Molec Biol 51:77–129, 1988Google Scholar
  9. 9.
    Gluick TC, Draper DE: Tertiary structure of ribosomal RNA. Curr Opin Struct Biol 2:338–344, 1992Google Scholar
  10. 10.
    Gutell RR, Woese CR: Higher order structural elements in ribosomal RNAs: Pseudo-knots and the use of noncanonical pairs. Proc Natl Acad Sci USA 87:663–667, 1990Google Scholar
  11. 11.
    Woese CR, Gutell RR: Evidence for several higher order structural elements in ribosomal RNA. Proc Natl Acad Sci USA 86:3119–3122, 1989Google Scholar
  12. 12.
    Major F, Turcotte M, Gautheret D, Lapalme G, Fillion E, Cedergren R: The combination of symbolic and numerical computation for three-dimensional modeling of RNA. Science 253:1255–1260, 1991Google Scholar
  13. 13.
    Brimacombe R, Atmadja J, Stiege W, Schuler D: A detailed model of the three-dimensional structure ofEscherichia coli 16S ribosomal RNAin situ in the 30S subunit. J Mol Biol 199:115–136, 1988Google Scholar
  14. 14.
    Nagano K, Harel M: Approaches to a three-dimensional model ofE. coli ribosome. Prog Biophys Mol Biol 48:67–101, 1986Google Scholar
  15. 15.
    Nagano K, Harel M, Takezawa M: Prediction of three-dimensional structure ofEscherichia coli ribosomal RNA. J Theor Biol 134: 199–256, 1988Google Scholar
  16. 16.
    Stern S, Weiser B, Noller HF: Model for the three-dimensional folding of 16S ribosomal RNA. J Mol Biol 204:447–481, 1988Google Scholar
  17. 17.
    Stern S, Powers T, Changchien L-M, Noller HF: RNA-protein interactions in 30S ribosomal subunits: Folding and function of 16S rRNA. Science 244:783–790, 1989Google Scholar
  18. 18.
    Oakes MI, Lake JA: DNA-hybridization electron microscopy: Localization of five regions of 16S rRNA on the surface of 30S ribosomal subunits. J Mol Biol 211:897–906, 1990Google Scholar
  19. 19.
    Oakes MI, Kahan L, Lake JA: DNA-hybridization electron microscopy: Tertiary structure of 16S rRNA. J Mol Biol 211:907–918, 1990Google Scholar
  20. 20.
    Hubbard JM, Hearst JE: Computer modeling 16S ribosomal RNA. J Mol Biol 221:889–907, 1991Google Scholar
  21. 21.
    Yonath A, Berkovitch-Yellin Z: Hollows, voids, gaps and tunnels in the ribosome. Curr Opin Struct Biol 3:175–181, 1993Google Scholar
  22. 22.
    Yonath A, Franceschi F: Structural aspects of ribonucleoprotein interactions in ribosomes. Curr Opin Struct Biol 3:45–49, 1993Google Scholar
  23. 23.
    Kühlbrandt W: Discrimination of protein and nucleic acids by electron microscopy using contract variation. Ultramicroscopy 7:221–232, 1982Google Scholar
  24. 24.
    Kühlbrandt W, Unwin PNT: Distribution of RNA and protein in crystalline eukaryotic ribosomes. J Mol Biol 156:431–448, 1982Google Scholar
  25. 25.
    Beniac DR, Harauz G: Visualisation ofE. coli ribosomal RNAin situ by electron spectroscopic imaging and image averaging. Micron 24: 163–171, 1993Google Scholar
  26. 26.
    Beniac DR, Harauz G: Phosphorus imaging of ribosomal subunits fromEscherichia coli andThermomyces lanuginosus. In: Proc 21 st Ann Meet Microsc Soc Can. Montréal, Québec, 1994, pp 48–49Google Scholar
  27. 27.
    Beniac DR: Localisation of ribosomal RNA in ribosomal subunits ofEscherichia coli andThermomyces lanuginosus by electron spectroscopic imaging. M.Sc. Thesis, Department of Molecular Biology and Genetics, University of Guelph, 1994Google Scholar
  28. 28.
    Beniac DR, Harauz G: Remarkable moments in single particle electron image analysis. Optik 99:62–74, 1995Google Scholar
  29. 29.
    Boublik M, Oostergetel GT, Frankland B, Ottensmeyer FP: Topographical mapping of ribosomal RNAs in situ by electron spectroscopic imaging. In: Proc. 42nd Ann Meet Electron Microsc Soc Am. San Francisco Press, San Francisco, 1984, pp 690–691Google Scholar
  30. 30.
    Korn AP: Dark field electron microscopy of the 30S subunit of theE. coli ribosome. Ultramicroscopy 5:513–520, 1980Google Scholar
  31. 31.
    Korn AP, Spitnik-Elson P, Elson D: The topology of the 30S ribosomal subunit and a proposal for the surface distribution of its RNA by dark field electron microscopy. J Biol Chem 257:7155–7160, 1982Google Scholar
  32. 32.
    Korn AP, Spitnik-Elson P, Elson D, Ottensmeyer FP: Specific visualization of ribosomal RNA in the intact ribosome by electron spectroscopic imaging. Eur J Cell Biol 31:334–340, 1983Google Scholar
  33. 33.
    Ottensmeyer FP: Electron spectroscopic imaging: Parallel energy filtering and microanalysis in the fixed-beam electron microscope. J Ultrastruct Res 88:121–134, 1984Google Scholar
  34. 34.
    Boublik M, Oostergetel GT, Wall JS, Hainfield JF, Radermacher M, Wagenknecht T, Verschoor A, Frank J: Structure of ribosomes and their components by advanced techniques of electron microscopy and computer image analysis. In: B. Hardesty, G. Kramer (eds). Structure, Function, and Genetics of Ribosomes. Springer-Verlag, New York, 1986, pp 68–86Google Scholar
  35. 35.
    Boublik M, Mandiyan V, Tumminia S: Potential of electron microscopic techniques for structural analysis of ribosomes. In: W.E. Hill, A. Dahlberg, R.A. Garrett, P.B. Moore, D. Schlessinger, J.R. Warner (eds). The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, DC, 1990, pp 114–122Google Scholar
  36. 36.
    Boublik M, Mandiyan V, Tumminia S, Hainfield JF, Wall JS: Structural analysis of ribosomal particles fromEscherichia coli by scanning transmission electron microscopy. In: Proc 12th Int Cong Electron Microsc. San Francisco Press, San Francisco, 1990, pp 134–135Google Scholar
  37. 37.
    Boublik M, Wall J: Structure of rRNA in the ribosome. In: Proc 50th Ann Meet Electron Microsc Soc Am. San Francisco Press, San Francisco, 1992, pp 462–463Google Scholar
  38. 38.
    Mandiyan V, Hainfield JF, Wall JS, Boublik M: Conformational analysis of 16S ribosomal RNA fromEscherichia coli by scanning transmission electron microscopy. FEBS Letters 236:340–344, 1988Google Scholar
  39. 39.
    Mandiyan V, Tumminia SJ, Wall JS, Hainfield JF, Boublik M: Protein-induced conformational changes in 16S ribosomal RNA during the initial assembly steps of theEscherichia coli 30S ribosomal subunit. J Mol Biol 210:323–336, 1989Google Scholar
  40. 40.
    Mandiyan V, Tumminia SJ, Wall JS, Hainfield JF, Boublik M: Assembly of theEscherichia coli 30S ribosomal subunit reveals protein-dependent folding of the 16S rRNA domains. Proc Natl Acad Sci USA 88:8174–8178, 1991Google Scholar
  41. 41.
    Tumminia SJ, Mandiyan V, Wall JS, Boublik M: Heterogeneity ofEscherichia coli ribosomes established by scanning transmission electron microscopy. Biochimie 73:919–925, 1991Google Scholar
  42. 42.
    Tumminia SJ, Hellmann W, Wall JS, Boublik M: Visualization of protein-nucleic acid interactions involved in thein vitro assembly of theEscherichia coli 50S ribosomal subunit. J Mol Biol 235: 1239–1250, 1994Google Scholar
  43. 43.
    Frank J (ed.): Electron tomography: three-dimensional imaging with the transmission electron microscope. Plenum Press, New York, 1992Google Scholar
  44. 44.
    Frank J, Radermacher M: Three-dimensional reconstruction of single particles negatively stained or in vitreous ice. Ultramicroscopy 46: 241–262, 1992Google Scholar
  45. 45.
    Frank J, Penczek P, Grassucci R, Srivastava S: Three-dimensional reconstruction of the 70SEscherichia coli ribosome in ice: The distribution of ribosomal RNA. J Cell Biol 115:597–605, 1991Google Scholar
  46. 46.
    Penczek P, Radermacher M, Frank J: Three-dimensional reconstruction of single particles embedded in ice. Ultramicroscopy 40: 33–53, 1992Google Scholar
  47. 47.
    Penczek P, Grassucci RA, Frank J: The ribosome at improved resolution: new techniques for merging and orientation refinement in 3D cryo-electron microscopy of biological particles. Ultramicroscopy 53:251–270, 1994Google Scholar
  48. 48.
    Bauer R: Electron spectroscopic imaging: An advanced technique for imaging and analysis in transmission electron microscopy. Methods Microbiol 20:113–146, 1988Google Scholar
  49. 49.
    Ottensmeyer FP, Andrew JW: High resolution microanalysis of biological specimens by electron energy loss spectroscopy and by electron spectroscopic imaging. J Ultrastruct Res 72:336–348, 1980Google Scholar
  50. 50.
    Ottensmeyer FP: Scattered electrons in microscopy and microanalysis. Science 215:461–466, 1982Google Scholar
  51. 51.
    Andrews DW, Walter P, Ottensmeyer FP: Evidence for an extended 7SL RNA structure in the signal recognition particle. EMBO J 6: 3471–3477, 1987Google Scholar
  52. 52.
    Bazett-Jones DP, Ottensmeyer FP: Phosphorus distribution in the nucleosome. Science 211:169–170, 1981Google Scholar
  53. 53.
    Bazett-Jones DP, Ottensmeyer FP: DNA organization in nucleosomes. Can J Biochem 60:364–370, 1982Google Scholar
  54. 54.
    Bazett-Jones DP: Phosphorus imaging of the 7-S ribonucleoprotein particle. J Ultrastruct Mol Struct Res 99:59–69, 1988Google Scholar
  55. 55.
    Bazett-Jones DP, Locklear L, Rattner J: Electron spectroscopic imaging of DNA. J Ultrastruct Mol Struct Res 99:48–58, 1988Google Scholar
  56. 56.
    Harauz G, Ottensmeyer FP: Nucleosome reconstruction via phosphorus mapping. Science 226:936–940, 1984Google Scholar
  57. 57.
    Locklear L, Ridsdale JA, Bazett-Jones DP, Davie JR: Ultrastructure of transcriptionally competent chromatin. Nucleic Acids Res 18: 7015–7024, 1990Google Scholar
  58. 58.
    Bazett-Jones DP, Brown ML: Electron microscopy reveals that transcription factor TFIIIA bends SS DNA. Mol Cell Biol 9:336–341, 1989Google Scholar
  59. 59.
    Rattner JB, Bazett-Jones DP: Kinetochore structure: Electron spectroscopic imaging of the kinetochore. J Cell Biol 108: 1209–1219, 1989Google Scholar
  60. 60.
    Bazett-Jones DP, Leblanc B, Herfort M, Moss T: Short-range DNA looping by theXenopus HMG-box transcription factor, xUBF. Science 264:1134–1137, 1994Google Scholar
  61. 61.
    Harauz G, Flannigan DT: Characteristic electron microscopical projections of the small ribosomal subunit fromThermomyces lanuginosus. Biochim. Biophys Acta 1130:289–296, 1992Google Scholar
  62. 62.
    Harauz G: Electron microscopical projections of the large ribosomal subunit fromThermomyces lanuginosus. Biochim Biophys Acta 1132: 58–66, 1992Google Scholar
  63. 63.
    Whiting RF, Ottensmeyer FP: Heavy atoms in model compounds and nucleic acids imaged by dark field transmission electron microscopy. J Mol Biol 67:173–181, 1972Google Scholar
  64. 64.
    van Heel M, Keegstra W: IMAGIC: a fast, flexible and friedly image analysis software system. Ultramicroscopy 7:113–130, 1981Google Scholar
  65. 65.
    Ottensmeyer FP: Scattered electrons in biological structure determination. In: R. Feder, J. Wm. McGowan, D. M. Shinozaki (eds). Examining the Submicron World, Plenum, New York, 1986, pp 137–151Google Scholar
  66. 66.
    Ottensmeyer FP: Elemental mapping by energy filtration: advantages, limitations, and compromises. Ann NY Acad Sci 483:339–353, 1986Google Scholar
  67. 67.
    Ottensmeyer FP, Frankland BW: Spectral processing for parallel recording of elemental maps. Scann Microsc Suppl. 2: 75–82, 1988Google Scholar
  68. 68.
    van Heel MG, Frank J: Use of multivariate statistics in analysing the images of biological macromolecules. Ultramicroscopy 6:187–194, 1981Google Scholar
  69. 69.
    Frank J, Verschoor A, Boublik M: Computer averaging of electron micrographs of 40S ribosomal subunits. Science 214:1353–1355, 1981Google Scholar
  70. 70.
    van Heel M: Multivariate statistical classification of noisy images (randomly oriented biological macromolecules). Ultramicroscopy 13: 165–184, 1984Google Scholar
  71. 71.
    Frank J, Radermacher M, Wagenknecht T, Verschoor A: Studying ribosome structure by electron microscopy and computer-image processing. Methods Enzymol 164:3–35, 1988Google Scholar
  72. 72.
    Harauz G, Boekema EJ, van Heel MG: Statistical image analysis of electron micrographs of ribosomal subunits. Methods Enzymol 164: 35–49, 1988Google Scholar
  73. 73.
    Frank J: Image analysis of singe macromolecules. Electron Microsc Rev 2:53–74, 1989Google Scholar
  74. 74.
    Frank J: Classification of macromolecular assemblies studied as ‘single particles’. Quart Rev Biophys 23:281–329, 1990Google Scholar
  75. 75.
    Harauz G, Boekema EJ:Processing and analysis of electron images of biomolecules. In: D. Häder (ed.). Image Analysis in Biology. CRC Press, Boca Raton, 1991, pp 195–218Google Scholar
  76. 76.
    Kapur JN, Sahoo PK, Wong ACK: A new-method for grey-level picture thresholding using the entropy of the histogram. Comp Vis Graph Im Proc 29:273–285, 1985Google Scholar
  77. 77.
    Sahoo PK, Soltani S, Wong ACK, Chen YC: A survey of thresholding techniques. Comp Vis Graph Im Proc 41:233–260, 1988Google Scholar
  78. 78.
    Hawkes PW: Some unsolved problems and promising methods in electron image processing. In: W. Baumeister, W. Vogell (eds). Electron Microscopy at Molecular Mimensions. Springer-Verlag, Berlin, 1980, pp 288–299Google Scholar
  79. 79.
    Hawkes PW: The use of moment and other invariants in electron image processing. In: P. Brederoo, W. de Priester (eds). Proceedings of the 7th European Congress of Electron Microscopy. The Seventh European congress on Electron Microscopy Foundation, Leiden, 1980, Volume 1, pp 500–501Google Scholar
  80. 80.
    Teague MR: Image analysis via the general theory of moments. J Opt Soc Am 70:920–930, 1980Google Scholar
  81. 81.
    Verschoor A, Zhang N-Y, Wagenknecht T, Obrig T, Radermacher M, Frank J: Three-dimensional reconstruction of mammalian 40S ribosomal subunit. J Mol Biol 209:115–126, 1989Google Scholar
  82. 82.
    Harauz G, Ottensmeyer FP: Direct three-dimensional reconstruction for macromolecular complexes from electron micrographs. Ultramicroscopy 12:309–319, 1984Google Scholar
  83. 83.
    Harauz G, van Heel MG: Exact filters for general geometry three dimensional reconstruction. Optik 73:146–156, 1986Google Scholar
  84. 84.
    Saxton WO: Computer generation of shadded images of solids and surfaces. Ultramicroscopy 16:387–394, 1985Google Scholar
  85. 85.
    Verschoor A, Frank J, Radermacher M, Wagenknecht T, Boublik M: Three-dimensional reconstruction of the 30S ribosomal subunit from randomly oriented projections. J Mol Biol 178:677–698, 1984Google Scholar
  86. 86.
    Carazo JM, Frank J: Three-dimensional matching of macromolecular structures obtained from electron microscopy: an application to the 70S and 50SE. coli ribosomal particles. Ultramicroscopy 25:13–22, 1988Google Scholar
  87. 87.
    Frank J, Verschoor A, Boublik M: Multivariate statistical analysis of ribosome electron micrographs: L and R lateral views of the 40S subunit from HeLa cells. J Mol Biol 161:107–137, 1982Google Scholar
  88. 88.
    Wagenknecht T, Carazo J-M, Radermacher M, Frank J: Three-dimensional reconstruction of the ribosome fromEscherichia coli. Biophys J 55:455–464, 1989Google Scholar
  89. 89.
    Frank J, Verschoor A, Radermacher M, Wagenknecht T: Morphologies of eubacterial and eukaryotic ribosomes as determined by 3D electron microscopy. In: W.E. Hill, A. Dahlberg, R.A. Garrett, P.B. Moore, D. Schlessinger, J.R. Warner (eds). The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, DC, 1990, pp 107–113Google Scholar
  90. 90.
    Verschoor A, Frank J: Three-dimensional structure of the mammalian cytoplasmic ribosome. J Mol Biol 214:737–749, 1990Google Scholar
  91. 91.
    Srivastava S, Verschoor A, Frank J: Eukaryotic initiation factor 3 does not prevent association through physical blockage of the ribosomal subunit-subunit interface. J Mol Biol 226:301–304, 1992Google Scholar
  92. 92.
    Wu J, Beniac DR, Harauz G: Ribosomal proteins ofThermomyces lanuginosus — Characterisation by two-dimensional gel electrophoresis and differential disassembly. Mol Cell Biochem 143: 21–34, 1995Google Scholar
  93. 93.
    Woodcock CLF, Frado L-LY, Wall JS: Composition of native and reconstituted chromatin particles: direct mass determination by scanning transmission electron microscopy. Proc Natl Acad Sci USA 77:4818–4822, 1980Google Scholar
  94. 94.
    van Heel M, Stöffler-Meilicke M: Characteristic views ofE. coli andB. stearothermophilus 30S ribosomal subunits in the electron microscope. EMBO J 4:2389–2395, 1985Google Scholar
  95. 95.
    Radermacher M: Three-dimensional reconstruction from random projections: orientational alignment via Radon transforms. Ultramicroscopy 53:121–136, 1994Google Scholar
  96. 96.
    Henkelman RM, Ottensmeyer FP: An energy filter for biological electron microscopy. J Microsc 102:79–94, 1974Google Scholar
  97. 97.
    Unwin PNT, Henderson R: Molecular structure determination by electron microscopy of unstained crystalline specimens. J Mol Biol 94:425–440, 1975Google Scholar
  98. 98.
    Glaeser RM, Downing KH: High-resolution electron crystallography of protein molecules. Ultramicroscopy 52:478–486, 1993Google Scholar
  99. 99.
    Haider M: Novel imaging modes available with a cryo-STEM, equipped with a high dispersive double deflection electron spectrometer. In: Proc 16th Ann Meet Microsc Soc Can Guelph, Canada, 1989, pp 10–11Google Scholar
  100. 100.
    Ottensmeyer FP, Whiting RF, Schmidt EE, Clemens RS: Electron mictrotephroscopy of proteins: A close look at the ashes of myokinase and protamine. J Ultrastruct Res 52:193–201, 1975Google Scholar
  101. 101.
    Bazett-Jones DP, Ottensmeyer FP: A model for the structure of nucleoprotamine. J Ultrastruct Res 67:255–266, 1979Google Scholar
  102. 102.
    Korn AP, Ottensmeyer FP: Dark-field electron microscopy of small peptide hormones: adrenocortitrophic hormone, glucagon, secretin. J Ultrastruct Res 79:142–157, 1982Google Scholar
  103. 103.
    Andrews DW, Ottensmeyer FP: Electron microscopy of the poly-L-lysine α-helix. Ultramicroscopy 9:337–348, 1982Google Scholar
  104. 104.
    Ottensmeyer FP, Bazett-Jones DP, Rust HP, Weiss K, Zemlin F, Engel A: Radiation exposure and recognition of electron microscopic images of protamine at high resolution. Ultramicroscopy 3: 191–202, 1978Google Scholar
  105. 105.
    Frost LS, Bazett-Jones DP: Examination of the phosphate in conjugative F-like pili by use of electron spectroscopic imaging. J Bact 173:7728–7731, 1991Google Scholar
  106. 106.
    Harauz G, Beniac DR, Neil KJ, Arsenault AL, Rutherford B, Ottensmeyr FP, Zhang W, Evans DH: Electron spectroscopic imaging ofvaccinia virus suggests the DNA lies on the nucleoid periphery. In: Proc 21st Ann Meet Microsc Soc Can. Montreal, Quebec, 1994, pp 58–59Google Scholar
  107. 107.
    Zabal MMZ, Czarnota GC, Bazett-Jones DP, Ottensmeyer FP: Conformational characterization of nucleosomes by principal components analysis of their electron micrographs. J Microsc 172: 205–214, 1993Google Scholar
  108. 108.
    Boisset N, Radermacher M, Grassucci R, Taveau J-C, Liu W, Lamy J, Frank J, Lamy JN: Three-dimensional immunoelectron microscopy of scorpion hemocyanin labeled with a monoclonal Fab fragment. J Struct Biol 111:234–244, 1993Google Scholar
  109. 109.
    Woodcock CLF, Frank J: Nucleosome mass distribution using image averaging. J Ultrastruct Res 89:295–302, 1984Google Scholar
  110. 110.
    Radermacher M, Wagenknecht T, Verschoor A, Frank J: Three-dimensional reconstruction from a single-exposure, random conical tilt series applied to the 50S ribosomal subunit ofEscherichia coli. J Microsc 146:113–136, 1987Google Scholar
  111. 111.
    Radermacher M, Wagenknecht T, Verschoor A, Frank J: Three-dimensional structure of the large ribosomal subunit ofEscherichia coli. EMBO J 6:1107–1114, 1987Google Scholar
  112. 112.
    Radermacher M: Three-dimensional reconstruction of single particles from radom and nonrandom tilt series. J Elect Microsc Tech 9: 359–394, 1988Google Scholar
  113. 113.
    Klug A, Finch JT: Structure of viruses of the papilloma-polyoma type. I. Human wart virus. J Mol Biol 11:403–423, 1965Google Scholar
  114. 114.
    Finch JT, Klug A: Structure of viruses of the papilloma-polyoma type. III. Structure of rabbit papilloma virus. J Mol Biol 13:1–12, 1965Google Scholar
  115. 115.
    Klug A, Finch JT: Structure of viruses of the papilloma-polyoma type. IV. Analysis of tilting experiments in the electron microscope. J Mol Biol 31:1–12, 1968Google Scholar
  116. 116.
    van Heel M: Angular reconstitution:a posteriori assignment of projection directions for 3D reconstruction. Ultramicroscopy 21: 111–124, 1987Google Scholar
  117. 117.
    Goncharov AB, Gelfand MS: Determination of mutual orientation of identical particles from their projections by the moments method. Ultramicroscopy 25:317–328, 1988Google Scholar
  118. 118.
    Salzman DB: A method of general moments for orienting 2D projections of unknown 3D objects. Comp Vis Graph Im Proc 50: 129–156, 1990Google Scholar
  119. 119.
    Farrow NA, Ottensmeyer FP:A posteriori determination of relative projection directions of arbitrarily oriented macromolecules. J Opt Soc Am A 9:1749–1760, 1992Google Scholar
  120. 120.
    Farrow NA, Ottensmeyer FP: Automatic 3D alignment of projection images of randomly oriented objects. Ultrarnicroscopy 52:141–156, 1993Google Scholar
  121. 121.
    Czarnota GJ, Andrews DW, Farrow NA, Ottensmeyer FP: A structure for the signal sequence binding protein SRP54: 3D reconstruction from STEM images of single molecules. J Struct Biol 113:35–46, 1994Google Scholar
  122. 122.
    Kyle KM, Harauz G: Structures of ribosomal subunits fromSaccharomyces cerevisiae. Micron Microsc Acta 23:273–286, 1992Google Scholar
  123. 123.
    Weitzman CJ, Cunningham PR, Nurse K, Ofengand J: Chemical evidence for domain assembly of theEscherichia coli 30S ribosome. FASEB J 7:177–180, 1993Google Scholar
  124. 124.
    van Heel M, Harauz G: Resolution criteria for three-dimensional reconstruction. Optik 73:119–122, 1986Google Scholar
  125. 125.
    van Heel M: Similarity measures between images. Ultramicroscopy 21:95–100, 1987Google Scholar
  126. 126.
    Golden BL, Ramakrishnan V, White SW: Ribosomal protein L6: structural evidence of gene duplication from a primitive RNA binding protein. EMBO J 12:4901–4908, 1993Google Scholar
  127. 127.
    Ramakrishnan V, Gerchman SE, Golden BL, Hoffman DW, Kycia JH, Porter SJ, White SW: Structural studies on prokaryotic ribosomal proteins. In: K. Merhaus, F. Franceschi, A.R. Subramanian, V.A. Erdmann, B. Wittmann-Liebold (eds). The Translational Apparatus-Structure, Function, Regulation, Evolution. Plenum Press, New York, 1993, pp 533–544Google Scholar
  128. 128.
    Avila-Sakar AJ, Guan T-L, Arad T, Schmid MF, Loke TW, Yonath A, Piefke J, Franceschi F, Chiu W: Electron cryomicroscopy ofBacillus stearothermophilus 50S ribosomal subunits crystallized on phospholipid monolayers. J Mol Biol 239: 689–697, 1994Google Scholar
  129. 129.
    Brimacombe R, Gruer B, Mitchell P, Osswald M, Rinke-Appel J, Schuler D, Stade K: Three-dimensional structure and function ofEscherichia coli 16S and 23S rRNA as studied by cross-linking techniques. In: W.E. Hill, A. Dahlberg, R.A. Garrett, P.B. Moore, D. Schlessinger, J. R. Warner (eds). The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, DC, 1990, pp 93–106Google Scholar
  130. 130.
    Capel MS, Kjeldgaard M, Engleman D, Moore P: Positions of S2, S13, S16, S17, S19 and S21 in the 30S ribosomal subunit ofEscherichia coli. J Mol Biol 200:65–87, 1988Google Scholar
  131. 131.
    Stöffler-Meilicke M, Stöffler G: Topography of the ribosomal proteins fromEscherichia coli within the intact subunits as determined by immunoelectron microscopy and protein-protein cross-linking. In: W.E. Hill, A. Dahlberg, R.A. Garrett, P.B. Moore, D. Schlessinger, J.R. Warner (eds). The Ribosome: Structure, Function, and Evolution. American Society for Microbiology, Washington, DC, 1990, pp 123–133Google Scholar
  132. 132.
    Harauz G, Beniac DR, Czarnota GJ, Farrow NA, Ottensmeyer FP: Reconstructing prokaryotic and eukaryotic ribosomal RNA. Annual Meeting of the Canadian Federation of Biological Societies, Saskatoon, Saskatchewan, Canada, 15–17 June 1995Google Scholar
  133. 133.
    Jap BK, Zulauf M, Scheybani T, Hefti A, Baumeister W, Aebi U, Engel E: 2D crystallization: from art to science. Ultramicroscopy 46:45–84, 1992Google Scholar
  134. 134.
    Malhotra A, Gabb HA, Harvey SC: Modeling large nucleic acids. Curr Opin Struct Biol 3: 241–246, 1993Google Scholar
  135. 135.
    Malhotra A, Tan RK-Z, Harvey SC: Prediction of the threedimensional structure ofEscherichia coli 30S ribosomal subunit: a molecular mechanics approach. Proc Natl Acad Sci USA 87: 1950–1954, 1990Google Scholar
  136. 136.
    Srivastava S, Verschoor A, Radermacher M, Grassucci R, Frank J: Three-dimensional reconstruction of marnmalian 40S ribosomal subunit embedded in ice. J Mol Biol 245:461–466, 1995Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Daniel R. Beniac
    • 1
  • George Harauz
    • 1
    • 2
  1. 1.Department of Molecular Biology and Genetics, College of Biological ScienceUniversity of GuelphGuelphCanada
  2. 2.Department of Computing and Information ScienceUniversity of GuelphGuelphCanada

Personalised recommendations