A characterization of well-posed minimum problems in a complete metric space

  • M. Furi
  • A. Vignoli
Technical Note


Given a functionalI:XR, defined on a complete metric space (X,d), we give a necessary and sufficient condition for the minimum problem forI onX to be well posed or well posed in the generalized sense.


Minimum Problem Optimization Theory Generalize Sense Lower Semicontinuous Akademii Nauk SSSR 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Tichonov, A. N.,On the Stability of the Functional Optimization Problem, USSR Computational Mathematics and Mathematical Physics, Vol. 6, No. 4, 1966.Google Scholar
  2. 2.
    Furi, M., andVignoli, A.,About Well-Posed Optimization Problems for Functionals in Metric Spaces, Journal of Optimization Theory and Applications, Vol. 5, No. 3, 1970.Google Scholar
  3. 3.
    Kuratowski, C.,Topologie, Monografie Matematiczne, Vol. 20, Panstwove Wydanictwo Naukowe, Warsaw, Poland, 1958.Google Scholar
  4. 4.
    Poljak, B. T.,Existence Theorems and the Convergence of Minimizing Sequences in the Extremum Problems with Limitations, Doklady Akademii Nauk SSSR, Vol. 166, No. 2, 1966.Google Scholar
  5. 5.
    Hartman, P.,Ordinary Differential Equations, John Wiley and Sons, New York, 1964.MATHGoogle Scholar
  6. 6.
    Browder, F. E.,On the Convergence of Successive Approximations for Nonlinear Functional Equations, Indagationes Mathematicae, Vol. 30, No. 1, 1968.Google Scholar
  7. 7.
    Furi, M., andVignoli, A.,Fixed Points for Densifying Mappings, Rendiconti della Accademia Nazionale dei Lincei, Vol. 47, No. 6, 1969.Google Scholar
  8. 8.
    Furi, M., andVignoli, A.,On α-Nonexpansive Mappings and Fixed Points, Rendiconti della Accademia Nazionale dei Lincei, Vol. 48, No. 2, 1970.Google Scholar

Copyright information

© Plenum Publishing Corporation 1970

Authors and Affiliations

  • M. Furi
    • 1
  • A. Vignoli
    • 1
  1. 1.Department of MathematicsUniversity of FlorenceFlorenceItaly

Personalised recommendations