Advertisement

Optimization of structural design

  • W. Prager
Survey Paper

Abstract

Typical problems of optimal structural design are discussed to indicate mathematical techniques used in this field. An introductory example (Section 2) concerns the design of a beam for prescribed maximal deflection and shows how suitable discretization may lead to a problem of nonlinear programming, in this case, convex programming. The problem of optimal layout of a truss (Section 3) is discussed at some length. A new method of establishing optimality criteria (Section 4) is illustrated by the optimal design of a statically indeterminate beam of segmentwise constant or continuously varying cross section for given deflection under a single concentrated load. Other applications of this method (Section 5) are briefly discussed, and a simple example of multipurpose design (Section 6) concludes the paper.

Keywords

Optimal Design Nonlinear Programming Structural Design Optimality Criterion Typical Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Haug, E. J., Jr., andKirmser, P. G.,Minimum Weight Design of Beams with Inequality Constraints on Stress and Deflection, Journal of Applied Mechanics, Vol. 34, No. 4, 1967.Google Scholar
  2. 2.
    Blasius, H.,Träger Kleinster Durchbiegung und Stäbe Grösster Knickfestigkeit bei Gegebenem Materialverbrauch, Zeitschrift für Angewandte Mathematik und Physik, Vol. 62, 1914.Google Scholar
  3. 3.
    Barnett, R. L.,Minimum Weight Design of Beams for Deflection, Proceedings of the ASCE, Journal of the Engineering Mechanics Division, Vol. 1, No. EM1, 1961.Google Scholar
  4. 4.
    Barnett, R. L.,Minimum Deflection Design of a Uniformly Accelerating Cantilever Beam, Journal of Applied Mechanics, Vol. 30, No. 3, 1963.Google Scholar
  5. 5.
    Dorn, W. S., Gomory, R. E., andGreenberg, H. G.,Automatic Design of Optimal Structures, Journal de Mécanique, Vol. 3, No. 1, 1964.Google Scholar
  6. 6.
    Maxwell, J. C.,On Reciprocal Figures, Frames, and Diagrams of Force, Scientific Papers, Vol. 2, University Press, Cambridge, England, 1890.Google Scholar
  7. 7.
    Michell, A. G. M.,The Limits of Economy of Material in Frame-Structures, Philosophical Magazine, Vol. 8, No. 47, 1904.Google Scholar
  8. 8.
    Prager, W.,On a Problem of Optimal Design, Proceedings of the Symposium on Non-Homogeneity in Elasticity and Plasticity (Warsaw, 1958), Pergamon Press, New York, 1959.Google Scholar
  9. 9.
    Hencky, H.,Über Einige Statisch Bestimmte Fälle des Gleichgewichts in Plastischen Körpern, Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 3, No. 4, 1923.Google Scholar
  10. 10.
    Prandtl, L.,Anwendungsbeispiele zu einem Henckyschen Satz über das plastische Gleichgewicht, Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 3, No. 6, 1923.Google Scholar
  11. 11.
    Carathéodory, C., andSchmidt, E.,Über die Hencky-Prandtlschen Kurvenscharen, Zeitschrift für Angewandte Mathematik und Mechanik, Vol. 3, No. 6, 1923.Google Scholar
  12. 12.
    Prager, W.,On Hencky-Prandtl Lines, Revue de la Faculté des Sciences de l'Université d'Istanbul, Series A, Vol. 4, 1938.Google Scholar
  13. 13.
    Kapuano, I.,Sur Une Nouvelle Propriété des Réseaux Hencky-Prandtl, Revue de la Faculté des Sciences de l'Université d'Istanbul, Series A, Vol. 6, 1941.Google Scholar
  14. 14.
    Kiss, F., andSzentágothai, J.,Atlas of Human Anatomy, Vol. 1, The Macmillan Company, New York, 1964.Google Scholar
  15. 15.
    Hu, T. C., andShield, R. T.,Minimum-Volume Design of Discs, Zeitschrift für Angewandte Mathematik und Physik, Vol. 12, No. 5, 1961.Google Scholar
  16. 16.
    Hemp, W. S.,Studies in the Theory of Michell Structures, Proceedings of the International Congress of Applied Mechanics (Munich, 1964), Springer, Berlin, 1966.Google Scholar
  17. 17.
    Sheu, C. Y., andPrager, W.,Minimum-Weight Design with Piecewise Constant Specific Stiffness, Journal of Optimization Theory and Applications, Vol. 2, No. 3, 1968.Google Scholar
  18. 18.
    Prager, W., andTaylor, J. E.,Problems of Optimal Structural Design, Journal of Applied Mechanics, Vol. 35, No. 1, 1968.Google Scholar
  19. 19.
    Keller, J. B.,The Shape of the Strongest Column, Archive for Rational Mechanics and Analysis, Vol. 5, No. 4, 1960.Google Scholar
  20. 20.
    Tadjbakhsh, I., andKeller, J. B.,Strongest Columns and Isoperimetric Inequalities for Eigenvalues, Journal of Applied Mechanics, Vol. 29, No. 1, 1962.Google Scholar
  21. 21.
    Keller, J. B., andNiordson, F. I.,The Tallest Column, Journal of Mathematics and Mechanics, Vol. 16, No. 5, 1966.Google Scholar
  22. 22.
    Taylor, J. E.,The Strongest Column—An Energy Approach, Journal of Applied Mechanics, Vol. 34, No. 2, 1967.Google Scholar
  23. 23.
    Huang, N. C., andSheu, C. Y.,Optimal Design of an Elastic Column of Thin-Walled Cross Section, Journal of Applied Mechanics, Vol. 35, No. 2, 1968.Google Scholar
  24. 24.
    Niordson, F. I.,On the Optimal Design of a Vibrating Beam, Quarterly of Applied Mathematics, Vol. 23, No. 1, 1965.Google Scholar
  25. 25.
    Turner, J. M.,Design of Minimum-Mass Structures with Specified Natural Frequencies, AIAA Journal, Vol. 5, No. 3, 1967.Google Scholar
  26. 26.
    Taylor, J. E.,Minimum-Mass Bar for Axial Vibration at Specified Natural Frequency, AIAA Journal, Vol. 5, No. 10, 1967.Google Scholar
  27. 27.
    Zarghamee, M. S.,Optimum Frequency of Structures, AIAA Journal, Vol. 6, No. 4, 1968.Google Scholar
  28. 28.
    Sheu, C. Y.,Elastic Minimum-Weight Design for Specified Fundamental Frequency, International Journal of Solids and Structures, Vol. 4, No. 10, 1968.Google Scholar
  29. 29.
    Prager, W., andHodge, P. G., Jr.,Theory of Perfectly Plastic Solids, John Wiley and Sons, New York, 1951.Google Scholar
  30. 30.
    Shield, R. T.,Optimum Design Methods for Structures, Plasticity, edited by E. H. Lee and P. S. Symonds, Pergamon Press, London, 1960.Google Scholar
  31. 31.
    Reitman, M. I., andShapiro, G. S.,Teoria Optimalnogo Proektirovania i Stroitelnoi Mekhanike, Teorii Uprugosti i Plastichnosti, Itogi Nauk, Seria Mekhanika, Moscow, 1966.Google Scholar
  32. 32.
    Mayeda, R., andPrager, W.,Minimum-Weight Design of Beams for Multiple-Loading, International Journal of Solids and Structures, Vol. 3, No. 6, 1967.Google Scholar
  33. 33.
    Prager, W., andShield, R. T.,Optimal Design of Multi-Purpose Structures, International Journal of Solids and Structures, Vol. 4, No. 4, 1968.Google Scholar
  34. 34.
    Icerman, L. J.,Optimal Structural Design for Given Dynamic Deflection, International Journal of Solids and Structures, Vol. 5, 1969.Google Scholar
  35. 35.
    Prager, W.,Optimal Structural Design for Given Stiffness in Stationary Creep, Zeitschrift für Angewandte Mathematik und Physik, Vol. 19, No. 2, 1968.Google Scholar

Copyright information

© Plenum Publishing Corporation 1970

Authors and Affiliations

  • W. Prager
    • 1
  1. 1.Department of the Aerospace and Mechanical Engineering SciencesUniversity of California at San DiegoLa Jolla

Personalised recommendations