Origins of life

, Volume 9, Issue 4, pp 299–311 | Cite as

Antiquity and evolutionary status of bacterial sulfate reduction: Sulfur isotope evidence

  • Manfred Schidlowski


The presently available sedimentary sulfur isotope record for the Precambrian seems to allow the following conclusions: (1) In the Early Archaean, sedimentary δ3 4 patterns attributable to bacteriogenic sulfate reduction are generally absent. In particular, the δ3 4 spread observed in the Isua banded iron formation (3.7×109 yr) is extremely narrow and coincides completely with the respective spreads yielded by contemporaneous rocks of assumed mantle derivation. Incipient minor differentiation of the isotope patterns notably of Archaean sulfates may be accounted for by photosynthetic sulfur bacteria rather than by sulfate reducers. (2) Isotopic evidence of dissimilatory sulfate reduction is first observed in the upper Archaean of the Aldan Shield, Siberia (∼3.0×109 yr) and in the Michipicoten and Woman River banded iron formations of Canada (2.75×109 yr). This narrows down the possible time of appearance of sulfate respirers to the interval 2.8–3.1×109 yr. (3) Various lines of evidence indicate that photosynthesis is older than sulfate respiration, the SO 4 2− utilized by the first sulfate reducers deriving most probably from oxidation of reduced sulfur compounds by photosynthetic sulfur bacteria. Sulfate respiration must, in turn, have antedated oxygen respiration as O2-respiring multicellular eucaryotes appear late in the Precambrian. (4) With the bulk of sulfate in the Archaean oceans probably produced by photosynthetic sulfur bacteria, the accumulation of SO 4 2− in the ancient seas must have preceded the buildup of appreciable steady state levels of free oxygen. Hence, the occurrence of sulfate evaporites in Archaean sediments does not necessarily provide testimony of oxidation weathering on the ancient continents and, consequently, of the existence of an atmospheric oxygen reservoir.


Sulfate Reduction Evaporite Sulfur Isotope Band Iron Formation Aldan Shield 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Broda, E.: 1975a,J. Mol. Evol. 7, 87.PubMedGoogle Scholar
  2. Broda, E.: 1975b,The Evolution of the Bioenergetic Processes, Pergamon, 220 pp.Google Scholar
  3. Broda, E.: 1977,Origins of Life 8, 173.Google Scholar
  4. Brown, J. S.: 1973,Econ. Geol. 68, 362.Google Scholar
  5. Buddington, A. F., Jensen, M. L. and Mauger, R. L.: 1969,Geol. Soc. Amer. Mem. 115, 423.Google Scholar
  6. Chukhrov, F. V., Vinogradov, V. I. and Ermilova, L. P.: 1970,Mineral. Deposita 5, 209.Google Scholar
  7. Cloud, P. E.: 1976,Paleobiology 2, 351.Google Scholar
  8. Donnelly, T. H., Lambert, I. B., Oehler, D. Z., Hallberg, J. A., Hudson, D. R., Smith, J. W., Bavinton, O. A. and Golding, L.: 1977,J. Geol. Soc. Austr. 24, 409.Google Scholar
  9. Dunlop, J. S. R.: 1978,Publ. Geol. Dept. & Extension Service, Univ. West. Austr. 2, 30.Google Scholar
  10. Egami, F.: 1974,Origins of Life 5, 405.PubMedGoogle Scholar
  11. Egami, F.: 1976,Origins of Life 7, 71.PubMedGoogle Scholar
  12. Eripp, R. E. P., Donnelly, T. H. and Lambert, I. B.: 1978,Spec. Publ. Geol. Soc. S. Afr. 5, in press.Google Scholar
  13. Garrels, R. M. and Mackenzie, F. T.: 1974,Soc. Econ. Paleontol. Mineral. Spec. Publ. 20, 193.Google Scholar
  14. Goodwin, A., Monster, J. and Thode, H. G.: 1976,Econ. Geol. 71, 870.Google Scholar
  15. Harrison, A. G. and Thode, H. G.: 1957,Trans. Faraday Soc. 53, 1648.Google Scholar
  16. Hawkesworth, C. J.: Moorbath, S., O'Nions, R. K. and Wilson, J. F.: 1975,Earth Planet. Sci. Lett. 25, 251.Google Scholar
  17. Heinrichs, T. K. and Reimer, T. O.: 1977,Econ. Geol. 72, 1426.Google Scholar
  18. Holland, H. D.: 1973,Geochim. Cosmochim. Acta 37, 2605.Google Scholar
  19. Holland, H. D.: 1974,Soc. Econ. Paleontol. Mineral. Spec. Publ. 20, 187.Google Scholar
  20. Holser, W. T. and Kaplan, I. R.: 1966,Chem. Geol. 1, 93.Google Scholar
  21. Hulston, J. R. and Thode, H. G.: 1965,J. Geophys. Res. 70, 3475.Google Scholar
  22. Junge, C. E., Schidlowski, M., Eichmann, R. and Pietrek, H.: 1975,Ibid. 80, 4542.Google Scholar
  23. Kaplan, I. R. and Rittenberg, S. C.: 1964,J. Gen. Microbiol. 34, 195.PubMedGoogle Scholar
  24. Kemp, A. L. W. and Thode, H. G.: 1968,Geochim. Cosmochim. Acta 32, 71.Google Scholar
  25. Knoll, A. and Barghoorn, E.: 1977,Science 198, 396.Google Scholar
  26. Lambert, I. B.: 1978Publ. Geol. Dept. & Extension Service, Univ. West. Austr. 2, 45.Google Scholar
  27. Lambert, I. B., Donnelly, T. H., Dunlop, J. S. R. and Groves, D. I.: 1978,Nature 276, 808.Google Scholar
  28. Lowe, D. R. and Knauth, I. P.: 1977,J. Geol. 85, 699.Google Scholar
  29. Mäkelä, M.: 1974,Geol. Surv. Finl. Bull.267, 45 p.Google Scholar
  30. Monster, J., Appel, P. W. U., Thode, H. G., Schidlowski, M., Carmichael, C. M. and Bridgwater, D.: 1979,Geochim. Cosmochim. Acta 43, 405.Google Scholar
  31. Moorbath, S., O'Nions, R. K. and Pankhurst, R. J.: 1973,Nature 245, 138.Google Scholar
  32. Muir, M. and Grant, P. R.: 1976, In,The Early History of the Earth (B. F. Windley), Wiley, New York, pp. 595.Google Scholar
  33. Peck, H. D.: 1974, InSymp. Soc. Gen. Microbiol. 24 (M. J. Carlile and J. J. Skehel, ed.), pp. 241.Google Scholar
  34. Perry, E. C.: Monster, J. and Reimer, T.: 1971,Science 171, 1015.Google Scholar
  35. Perry, E. C., Hickman, A. H. and Barnes, I. L.: 1975Geol. Soc. Amer. Abstr. Programs, p. 1226.Google Scholar
  36. Rye, R. O. and Ohmoto, H.: 1974,Econ. Geol. 69, 826.Google Scholar
  37. Schidlowski, M.: 1973,Geol. Rundsch. 62, 840.Google Scholar
  38. Schidlowski, M.: 1978, InOrigin of Life (H. Noda, ed), Center Acad. Publ., Japan, p. 3.Google Scholar
  39. Schidlowski, M., Appel, P. W. U., Eichmann, R. and Junge, C. E.: 1979,Geochim. Cosmochim. Acta 43, 189.Google Scholar
  40. Schidlowski, M., Junge, C. E. and Pietrek, H.: 1977,J. Geophys. Res. 82, 2557.Google Scholar
  41. Schneider, A.: 1970Contrib. Mineral. Petrol. 25, 95.Google Scholar
  42. Schopf, J. W.: 1974, InCosmochemical Evolution and the Origins of Life (J. Oro, S. L. Miller, C. Ponnamperuma and R. S. Young, eds.), D. Reidel, Holland, p. 119.Google Scholar
  43. Schwartz, R. M. and Dayhoff, M. O.: 1978,Science 199, 395.PubMedGoogle Scholar
  44. Shima, M., Gross, W. H. and Thode, H. G.: 1963,J. Geophys. Res. 68, 2835.Google Scholar
  45. Sidorenko, S. A. and Sidorenko, A. W.: 1975,Geol. Inst. Acad. Nauk. SSSR Trudy 277, 144 p.Google Scholar
  46. Thode, H. G., Dunford, H. B. and Shima, M.: 1962,Econ. Geol. 57, 565.Google Scholar
  47. Trudinger, P. A.: 1976,Earth Sci. Rev. 12, 259.Google Scholar
  48. Vinogradov, V. I., Reimer, T. O., Leites, A. M. and Smelov, S. B.: 1976,Litol. i Polezn. Iskop. 11, 12.Google Scholar

Copyright information

© D. Reidel Publishing Co 1979

Authors and Affiliations

  • Manfred Schidlowski
    • 1
  1. 1.Max-Planck-Institut für Chemie (Otto-Hahn-Institut)MainzW-Germany

Personalised recommendations