Molecular and Cellular Biochemistry

, Volume 144, Issue 1, pp 19–26 | Cite as

Effect of ischemia-reperfusion injury on the morphology of peroxisomes

  • Avtar K. Singh
  • Sukhvarsha Gulati


We have previously demonstrated that ischemic injury changed the density of peroxisomes into two distinct peaks, one with a normal density (1.21 g/cm3; Peak I) and a second peak with a lighter density (1. 14 g/cm3; Peak II).

We studied the peroxisomes from both peaks under the Electron microscope. Examination of peak I following ischemia showed loss of matrix proteins and damaged limiting membranes with leakage of DAB positive material in direct proportion to the duration of ischemia. Upon reperfusion of the ischemic liver Peak I showed more severe damage to the organelle. These observations clearly demonstrated that ischemia reperfusion injury causes structural damage to peroxisomes. Interestingly ultrastructural examination of Peak II following ischemia showed evidence of perisomal proliferation with budding of existing peroxisomes and the presence of micro peroxisomes (changes similar to those noted under conditions leading to perisomal proliferation). However, peak II following reperfusion showed only damaged organelle. These observations underline the importance of peroxisomes in the response of the cell to ischemia-reperfusion injury.

Key words

peroxisomes biogenesis kidney ischemia reperfusion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Paller MS, Hoidal JR, Ferris TF: Oxygen free radicals in ischemic acute renal failure in rat. J Clin Invest 74: 1156–1164, 1984PubMedGoogle Scholar
  2. 2.
    McCord JM: Oxygen derived free radicals in post-ischemic tissue injury. N Engl J Med 312: 159–163, 1985PubMedGoogle Scholar
  3. 3.
    Hansson R, Gustafsson B, Jonsson O et al.: Effect of xanthine oxidase inhibition on renal circulation after ischemia. Transplant Proc 14: 51–58, 1982Google Scholar
  4. 4.
    Hansson R, Jonsson O, Lundstam S, Pettersson S, Schersten T, Waldenstrom J: Effects of free radical scavengers on renal circulation after ischaemia in rabbit. Clin Sci 65: 605–610, 1983PubMedGoogle Scholar
  5. 5.
    Jolly SR, Kane WJ, Baillie MB, Abrams GD, Lucchesi BR: Canine myocardial reperfusion injury reduction by the combined administration of superoxide dismutase and catalase. Circ Res 54: 277–285, 1984PubMedGoogle Scholar
  6. 6.
    Singh I, Gulati S, Orak JK, Singh AK: Expression of antioxidant enzymes in rat kidney during ischemia-reperfusion injury. Mol Cell Biochem 125: 97–104, 1993PubMedGoogle Scholar
  7. 7.
    Farber JL, Chien KR, Mittnacht SJr: Myocardial ischemia: the pathogenesis of irreversible cell injury in ischemia. Am J Path 102: 271–281, 1981PubMedGoogle Scholar
  8. 8.
    Hems DA, Brosnan JT: Effects of ischemia on content of metabolites in rat liver and kidney in vivo. Biochem J 120: 105–111, 1970PubMedGoogle Scholar
  9. 9.
    Fiskum G: Mitochondrial damage during cerebral ischemia. Ann Emerg Med 14: 810–815, 1985PubMedGoogle Scholar
  10. 10.
    Fiskum G: Involvement of mitochondria in ischemic cell injury and in regulation of intracellular calcium. Am J Emerg Med 1: 147–153, 1983PubMedGoogle Scholar
  11. 11.
    Finkelstein SD, Gilfor D, Farber JL: Alterations in the metabolism of lipids in ischemia of the liver and kidney. J Lipid Res 26: 726–734, 1985PubMedGoogle Scholar
  12. 12.
    Braunwald E, Kloner RA: Myocardial reperfusion: a double-edged sword? J Clin Invest 76: 1713–1719, 1985PubMedGoogle Scholar
  13. 13.
    Ruidera E, Irazu CE, Rajagopalan PR, Orak JK, Fitts LT, Singh I: Fatty acid metabolism in renal ischemia. Lipids 23: 882–884, 1988PubMedGoogle Scholar
  14. 14.
    Wattiaux R, De Coninck SW: Effects of ischemia on lysosomes. Int Rev Exp Pathol 26: 85–106, 1984PubMedGoogle Scholar
  15. 15.
    Chien KR, Abrams J, Serroni A, Martin JT, Farber JL: Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell injury. J Biol Chem 253: 4809–4817, 1978PubMedGoogle Scholar
  16. 16.
    Gulati S, Singh AK, Irazu C et al.: Ischemia-reperfusion injury: biochemical alterations in peroxisomes of rat kidney. Arch Biochem Biophys 295: 90–100, 1992PubMedGoogle Scholar
  17. 17.
    Gulati S, Ainol L, Orak J, Singh AK, Singh I: Alterations of peroxisomal function in ischemia-reperfusion injury of rat kidney. Biochim Biophys Acta 1182: 291–298, 1993PubMedGoogle Scholar
  18. 18.
    de Duve C., Pressman BC, Gianetto R, Wattiaux R, Applemans F: Tissue fractionation studies: intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 60: 604–617, 1955PubMedGoogle Scholar
  19. 19.
    Baudhuin P, Beaufay Y, Rahman-Li Y et al.: Tissue fractionation studies. Intracellular distribution of monamine oxidase, aspartate aminotransferase, alanine aminotransferase, d-amino acid oxidase and catalase in rat liver tissue. Biochem J 92: 179–184, 1964PubMedGoogle Scholar
  20. 20.
    Cooperstein SJ, Lazarow A: A microspectrophotometeric method for the determination of cytochrome oxidase. J Biol Chem 189: 665–670, 1951PubMedGoogle Scholar
  21. 21.
    Beaufay H, Amar-Costesec A, Feytmans E et al.: Analytical study of microsomes and isolated subcellular membranes from rat liver (Parts I, II and III). J Cell Biol 61: 188–231, 1974Google Scholar
  22. 22.
    Bradford M: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72: 248–254, 1976PubMedGoogle Scholar
  23. 23.
    Roels F, Goldfischer S: Cytochemistry of human catalase. The demonstration of hepatic and renal peroxisomes by a high temperature procedure. J Histochem Cytochem 27: 1471–1477, 1979PubMedGoogle Scholar
  24. 24.
    de Duve C, Baudhuin PC: Peroxisomes (microbodies and related particles). Physiol Rev 46: 323–357, 1966PubMedGoogle Scholar
  25. 25.
    Luers G, Hashimoto T, Fahimi HD, Volkl A: Biogenesis of peroxisomes: isolation and characterization of 2 distinct peroxisomal populations from normal and regenerating rat liver. J Cell Biol 121: 1271–1280, 1993PubMedGoogle Scholar
  26. 26.
    Baumgart E, Volkl A, Hashimoto T, Fahimi HD: Biogenesis of peroxisomes: immunocytochemical investigation of peroxisomal membrane proteins in proliferating rat liver peroxisomes and in catalase-negative membrane loops. J Cell Biol 108: 2221–2231, 1989PubMedGoogle Scholar
  27. 27.
    Osmundsen H, Thomassen MS, Hiltunen JK, Berge RK: Physiological role of peroxisomal β-oxidation. In: Peroxisomes in Biology and Medicine (ed.) H.D. Fahimi and H. Seis. Springer-Verlag, Berlin, Heidelberg: 152–165, 1987Google Scholar
  28. 28.
    Lazarow PB, Fujiki Y: Biogenesis of peroxisomes. Ann Rev Cell Biol 1: 489–530, 1985PubMedGoogle Scholar
  29. 29.
    Osumi T, Fujiki Y: Topogenesis of peroxisomal proteins. Bioessays 12: 217–222, 1990PubMedGoogle Scholar
  30. 30.
    Fahimi HD, Baumgart E, Volkl A: Ultrastructural aspects of the biogenesis of peroxisomes in rat liver. Biochimie 75: 201–208, 1993PubMedGoogle Scholar
  31. 31.
    van den Bosch H, Schutgens RBH, Wanders RJA, Tager JM: Biochemistry of peroxisomes. Ann Rev Biochem 61: 157–197, 1992PubMedGoogle Scholar
  32. 32.
    Singh I: Peroxisomes in biology and medicine: a review. In: Advances in Structural Biology (ed.) S.K. Malhotra. J'ai Press Inc, Greenwich, Conn: 137–156, 1994Google Scholar
  33. 33.
    Brown FR, Voigt R, Singh AK, Singh I: Peroxisomal disorders —neurodevelopmental and biochemical aspects. Am J Dis Child 147: 617–626, 1993PubMedGoogle Scholar
  34. 34.
    Angermuller S, Bruder G, Volkl A, Wesch H, Fahim HD: Localization of xanthine oxidase in crystalline cores of peroxisomes. A cytochemical and biochemical study. Eur J Cell Biol 45: 137–144, 1987PubMedGoogle Scholar
  35. 35.
    Keller GA, Warner TG, Steimer KS, Hallewell RA. CuZn superoxide dismutase is a peroxisomal enzyme in human fibroblasts and hepatoma cells. Proc Natl Acad Sci 88: 7381–7385, 1991PubMedGoogle Scholar
  36. 36.
    Dhaunsi G, Gulati S, Singh AK, Orak JK, Asayama K, Singh I: Demonstration of CuZn superoxide dismutase in rat liver peroxisomes: Biochemical and immunochemical evidence. J Biol Chem 267: 6870–6873, 1991Google Scholar
  37. 37.
    Wanders RJA, Denis D: Demonstration of Cu−Zn superoxide dismutase in rat liver peroxisomes. Biochim Biophys Acta 1115: 259–262, 1992PubMedGoogle Scholar
  38. 38.
    Hodson EK, Fridovich I: The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of enzyme. Biochemistry 14: 5294–5299, 1975PubMedGoogle Scholar
  39. 39.
    Jewett SL, Cushings S, Gillespie F, Smith D, Sparks S: Reaction of bovine-liver copper-zinc superoxide dismutase with hydrogen peroxide. Eur J Biochem 180: 569–575, 1989PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • Avtar K. Singh
    • 1
  • Sukhvarsha Gulati
    • 2
  1. 1.Department of Pathology and Laboratory MedicineRalph H. Johnson V.A. Medical CenterCharlestonUSA
  2. 2.Department of Pathology and Laboratory MedicineMedical University of South CarolinaCharlestonUSA

Personalised recommendations