Advertisement

Molecular and Cellular Biochemistry

, Volume 137, Issue 1, pp 39–55 | Cite as

Structure, biosynthesis, and function of salivary mucins

  • Albert M. Wu
  • Gyorgy Csako
  • Anthony Herp
Article

Abstract

The glandular secretions of the oral cavity lining the underlying buccal mucosa are highly specialized fluids which provide lubrication, prevent mechanical damage, protect efficiently against viral and bacterial infections, and promote the clearance of external pollutants. This mucus blanket contains large glycoproteins termed mucins which contribute greatly to the viscoelastic nature of saliva and affect its complex physiological activity. The protein core of mucins consists of repetitive sequences, rich inO-glycosylated serine and threonine, and containing many helix-breaking proline residues. These features account for the extended, somewhat rigid structure of the molecule, a high hydrodynamic volume, its high buoyant density, and high viscosity. The oligosaccharide moiety of salivary mucins accounts for up to 85% of their weight. The oligosaccharide side chains exhibit an astonishing structural diversity. The isolation, composition, structure, molecular characteristics, and functional relevance of salivary mucins and their constituents is discussed in relation to recent advancements in biochemistry and molecular biology.

Key words

oligosaccharides tandem sequences cDNA receptors blood group antigens immune response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoppe-Seyler F: Physiologische Chemie. Hirschwald, Berlin, 1877Google Scholar
  2. 2.
    Beeley JA: Fascinating families of proteins: electrophoresis of human saliva. Biochem Soc Trans 21: 133–138, 1993Google Scholar
  3. 3.
    Martinez-Madrigal F, Micheau C: Major salivary glands. In: S.S. Sternberg (ed). Histology for Pathologists. Raven Press, New York, 1992, pp 457–478Google Scholar
  4. 4.
    McClatchey KD: Periodontium, minor salivary glands, and maxillary sinus. In: S.S. Sternberg (ed). Histology for Pathologists. Raven Press, New York, 1992, p 432Google Scholar
  5. 5.
    Spicer SS, Schulte BA: Diversity of cell glycoconjugates shown histochemically: A perspective. J Histochem Cytochem 40: 1–38, 1992Google Scholar
  6. 6.
    Winston DC, Proctor GB, Garrett JR, Schulte BA, Thomopoulos GN: Nerve-induced secretion of glycoconjugates from cat submandibular glands: a correlative study with lectin probes on tissue and saliva. J Histochem Cytochem 40: 1751–1760, 1992Google Scholar
  7. 7.
    Shori DK, Proctor GB, Garrett JR, Chan K-M: Secretion of multiple forms of tissue kallikrein in rat submandibular gland is influenced by the animals' sex and type of autonomic nerve impulse. Biochem Soc Trans 20: 98S, 1992Google Scholar
  8. 8.
    Hammersten O, Über das Mucin der Submaxillardrüse. I. Darstellung: Zusammensetzung und Eigenschaften des Submaxillaris Mucins. Hoppe-Seyler's Z 12: 163–195, 1888Google Scholar
  9. 9.
    Burnet FM: Mucins and mucoids in relation to influenza virus action. III. Inhibition of virus haemagglutination by glandular mucins. Australian J Exp Med Sci 26: 371–379, 1948Google Scholar
  10. 10.
    Gottschalk A: Carbohydrate residue of a urine mucoprotein inhibiting influenza virus haemagglutination. Nature 170: 662–663, 1952Google Scholar
  11. 11.
    Blix G, Gottschalk A, Klenk E: Proposed nomenclature in the field of sialic acids. Nature 175: 340–341, 1957Google Scholar
  12. 12.
    Kelm S, Paulson JC, Rose U, Brossmer R, Schmid, W, Bandgar BP, Schreiner E, Hartmann M, Zbiral E: Use of sialic acid analogues to define functional groups involved in binding to the influenza virus hemagglutinin. Eur J Biochem 205: 147–153, 1992Google Scholar
  13. 13.
    Schauer R: Occurrence of sialic acids. In: Sialic Acids: Chemistry, Metabolism and Function. Cell Biology Monogr Vol. 10. Springer Verlag, New York, 1982Google Scholar
  14. 14.
    Varki A: Diversity in sialic acids. Glycobiology 2: 25–40, 1992Google Scholar
  15. 15.
    Herp A, Wu AM, Moschera J: Current concepts of the structure and nature of mammalian glycoproteins. Mol Cell Biochem 23: 27–44, 1979Google Scholar
  16. 16.
    Gottschalk A, Bhargava AS, Murty VLN: Submaxillary gland glycoproteins. In: A. Gottschalk (ed). Glycoproteins. Elsevier Publ Comp Amsterdam, 1972, Part B, pp 810–829Google Scholar
  17. 17.
    Pigman W: Submandibular and sublingual glycoproteins. In: M.I. Horowitz and W. Pigman (eds). The Glycoconjugates. Academic Press, New York, 1972, Vol 1, pp 154–179Google Scholar
  18. 18.
    Carlstedt I, Sheehan JK, Corfield AP, Gallagher JT: Mucous glycoproteins: a gel of a problem. Essays Biochem 20: 41–76, 1985Google Scholar
  19. 19.
    Jentoft N: Why are proteinsO-glycosylated? TIBS 15: 291–294, 1990Google Scholar
  20. 21.
    Pigman W: In: M.I. Horowitz and W. Pigman (eds). The glycoconjugates. Academic Press, New York, 1972, Vol I, pp 131–135Google Scholar
  21. 21.
    Tettamanti G, Pigman W: Purification and characterization of bovine and ovine submaxillary mucins. Arch Biochem Biophys 124: 41–50, 1968Google Scholar
  22. 22.
    Rose MC, Kaufman B, Martin BM: Proteolytic fragmentation and peptide mapping of human carboxyamidomethylated tracheobronchial mucin. J Biol Chem 264: 8193–8199, 1989Google Scholar
  23. 23.
    Wheeler TT, Clark WB, Birdsell DC: Adherence ofActinomyces viscosus T14V and T14AV to hydroxyapatite surfacesin vitro and human teethin vivo. Infect Immun 25: 1066–1074, 1979Google Scholar
  24. 24.
    Hajishengallis G, Nikolova E, Russell MW: Inhibition ofStreptococcus mutans adherence to saliva-coated hydroxyapatite by human secretory immunoglobulin A (sIgA) antibodies to cell surface protein antigen I/ II: reversal by IgA1 protease cleavage. Infect Immun 60: 5057–5064, 1992Google Scholar
  25. 25.
    Slayter HS, Wold JK, Midtvedt T: Intestinal mucin of germfree rats. Biochemical and electron-microscopic characterization. Carbohydr Res 222: 1–9, 1991Google Scholar
  26. 26.
    Reddy MS, Bobek LA, Haraszthy GG, Biesbrock AR, Levine MJ: Structural features of the low-molecular-mass human salivary mucin. Biochem J 287: 639–643, 1992Google Scholar
  27. 27.
    Creeth JM, Bhaskar KR, Horton JR, Das I, Lopez-Vidriero MT, Reid L: The separation and characterization of bronchial glycoproteins by density gradient methods. Biochem J 167: 557–569, 1977Google Scholar
  28. 28.
    Devaraj N, Devaraj H, Bhavanandan VP: Purification of mucin glycoproteins by density gradient centrifugation in cesium trifluroacetate. Analyt Biochem 206: 142–146, 1992Google Scholar
  29. 29.
    Snyder CE, Nadziejko CE, Herp A: Isolation of bronchial mucins from cystic fibrosis sputum by use of citraconic anhydride. Carbohydr Res 105: 87–93, 1982Google Scholar
  30. 30.
    Reddy MS: Human tracheobronchial mucin: purification and binding toPseudomonas aeruginosa. Infect Immun 60: 1530–1535, 1992Google Scholar
  31. 31.
    Ramasubbu N, Reddy MS, Bergey EJ, Haraszthy GG, Soni SD, Levine MJ: Large-scale purification and characterization of the major phosphoproteins and mucins of human submandibular-sublingual saliva. Biochem J 280: 341–352, 1991Google Scholar
  32. 32.
    Klein A, Carnoy CH, Wieruszeski JM, Strecker G, Strang AM, van Halbeek H, Roussel P, Lamblin G: The broad diversity of neutral and sialylated oligosaccharides derived from human salivary mucins. Biochemistry 31: 6152–6165, 1992Google Scholar
  33. 33.
    Slomiany BL, Liau YH, Li Q, Fekete Z, Slomiany A: Role of sulphation in post-translational processing of rat salivary mucins. Arch Oral Biol 36: 785–790, 1991Google Scholar
  34. 34.
    Varma BK, Demers A, Jamieson AM, Blackwell J, Jentoft N: Light scattering studies of the effect of Ca2+ on the structure of porcine submaxillary mucin. Biopolymers 29: 441–448, 1990Google Scholar
  35. 35.
    Sheehan JK, Thornton DJ, Somerville M, Carlstedt I: The structure and heterogeneity of respiratory mucus glycoproteins. Am Rev Respir Dis 144: S4-S9, 1991Google Scholar
  36. 36.
    Payza N, Robert M, Herp A: The molecular weight of bovine and porcine submaxillary mucins. Int J Peptide Protein Res 2: 109–115, 1970Google Scholar
  37. 37.
    Verdugo P: Goblet cells secretion and mucogenesis. Ann Rev Physiol 52: 157–176, 1990Google Scholar
  38. 38.
    Verdugo P: Mucin exocytosis. Am Rev Respir Dis 144: S33-S37, 1991Google Scholar
  39. 39.
    Clarke LL, Grubb BR, Gabriel SE, Smithies O, Koller BH, Boucher RC: Defective epithelial chloride transport in a gene-targeted mouse model of cystic fibrosis. Science 257: 1125–1128, 1992Google Scholar
  40. 40.
    Collins FS: Cystic fibrosis: molecular biology and therapeutic implications. Science 256: 774–779, 1992Google Scholar
  41. 41.
    Slomiany A, Murty VLN, Aono M, Snyder CE, Herp A, Slomiany BL: Lipid composition of tracheobronchial secretions from normal individuals and patients with cystic fibrosis. Biochim Biophys Acta 710: 106–111, 1982Google Scholar
  42. 42.
    Nadziejko CE, Slomiany BL, Slomiany A: Most of the lipid in purulent sputum is bound to mucus glycoprotein. Exp Lung Res 19: 671–684, 1993Google Scholar
  43. 43.
    Barasch J, Kiss B, Prince A, Saiman L, Gruenert D, Al-Awqati Q: Defective acidification of intracellular organelles in cystic fibrosis. Nature 352: 70–73, 1991Google Scholar
  44. 44.
    Saiman L, Prince A:Pseudomonas aeruginosa pili bind to asialoGM1 which is increased on the surface of cystic fibrosis epithelial cells. J Clin Invest 92: 1875–1880, 1993Google Scholar
  45. 45.
    Cheng PW, Boat TF, Cranfill K, Yankaskas JR, Boucher RC: Increased sulfation of glycoconjugates by cultured nasal epithelial cells from patients with cystic fibrosis. J Clin Invest 84: 68–72, 1989Google Scholar
  46. 46.
    Mawhinney TP, Landrum DC, Gayer DA, Barbero GJ: Sulfated sialyloligosaccharides derived from tracheobronchial mucous glycoproteins of a patient suffering from cystic fibrosis. Carbohydr Res 235: 179–197, 1992Google Scholar
  47. 47.
    Hazlett LD, Masinick S, Barrett R, Rosol K: Evidence for asialo GM1 as a corneal glycolipid receptor forPseudomonas aeruginosa adhesion. Inf Immun 61: 5164–5173, 1993Google Scholar
  48. 48.
    Krivan HC, Roberts DD, Ginsburg V: Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAcß1–4Gal found in some glycolipids. Proc Natl Acad Sci USA 85: 6157–6161, 1988Google Scholar
  49. 49.
    Ramphal R, Carnoy C, Fievre S, Michalski JC, Houdret N, Lamblin G, Strecker G, Roussel P:Pseudomonas aeruginosa recognizes carbohydrate chains containing type 1 (Gal\1→3GlcNAc) or type 2 (Galß1→4GlcNAc) disaccharide units. Infect Immun 59: 700–704, 1991Google Scholar
  50. 50.
    Soby LM, Jamieson AM, Blackwell J, Jentoft N: Viscoelastic properties of solutions of ovine submaxillary mucin. Biopolymers 29: 1359–1366, 1990Google Scholar
  51. 51.
    McCullagh CM, Soby LM, Jamieson AM, Blackwell J: Viscolelastic behavior of fractionated ovine submaxillary mucins. Bioplymers 32: 1665–1674, 1992Google Scholar
  52. 52.
    Shogren R, Gerken TA, Jentoft N: Role of glycosylation on the conformation and chain dimensions ofO-linked glycoproteins: light-scattering studies of ovine submaxillary mucin. Biochemistry 28: 5525–5536, 1989Google Scholar
  53. 53.
    Shogren RL, Jamieson AM, Blackwell J, Cheng PW, Dearborn DG, Boat TF: Solution properties of porcine submaxillary mucin. Biopolymers 22: 1657–1675, 1983Google Scholar
  54. 54.
    Gupta R, Jentoft N, Jamieson AM, Blackwell J: Structural analysis of purified human tracheobronchial mucin. Biopolymers 29: 347–355, 1990Google Scholar
  55. 55.
    Sheehan JK, Boot-Handford RP, Chantler E, Carlstedt I, Thornton DJ: Evidence for shared epitopes within the ‘naked’ protein domains of human mucus glycoproteins. Biochem J 274: 293–296, 1991Google Scholar
  56. 56.
    Kawagishi S, Fahim REF, Wong KH, Bennick A: Purification and characterization of subunits of a high molecular weight human salivary mucin. Arch Oral Biol 35: 265–272, 1990Google Scholar
  57. 57.
    Pearson JP, Allen A: A protein of 70,000 molecular weight is joined by disulfide bridges to pig gastric mucus glycoprotein. Biochem Soc Trans 8: 388–389, 1980Google Scholar
  58. 58.
    Chace KV, Flux M, Sachdev GP: Comparison of physicochemical properties of purified mucous glycoproteins isolated from respiratory secretions of cystic fibrosis and asthmatic patients. Biochemistry 24: 7334–7341, 1985Google Scholar
  59. 59.
    Mantle M: Effects of hydrogen peroxide, mild trypsin digestion and partial reduction of rat intestinal mucin and its disulphide-bound 118 kDa glycoprotein. Biochem J 274: 679–685, 1991Google Scholar
  60. 60.
    Xu G, Huan LJ, Khatri IA, Wang D, Bennick A, Fahim REF, Forstner GG, Forstner JF: cDNA for the carboxyl-terminal region of a rat intestinal mucin-like peptide. J Biol Chem 267: 5401–5407, 1992Google Scholar
  61. 61.
    Wu AM, Pigman W: Preparation and characterization of armadillo submandibular glycoproteins. Biochem J 161: 37–47, 1977Google Scholar
  62. 62.
    Lombart C, Winzler RJ: Isolation and characterization of canine submaxillary mucin. Biochem J 128: 975–977, 1972 and Isolation and characterization of oligosaccharides from canine submaxillary mucin. Eur J Biochem 49: 77–86, 1974Google Scholar
  63. 63.
    Dutta BB, Ghosh S, Das A, Rao CVN: Isolation and characterization of goat submaxillary mucin. Carbohydr Res 101: 101–108, 1982Google Scholar
  64. 64.
    Downs F, Herp A: Chemical studies on a hamster sublingual glycoprotein. Int J Peptide Protein Res 10: 229–234, 1977Google Scholar
  65. 65.
    Baig MM, Zinzler RJ, Rennert OM: Isolation of mucin from human submaxillary secretions. J Immunol 111: 1826–1833, 1973Google Scholar
  66. 66.
    Denny PA, Denny PC: Purification and biochemical characterization of a mouse submandibular sialomucin. Carbohydr Res 87: 265–274, 1980Google Scholar
  67. 67.
    Eckhardt AE, Timpte CS, Abernethy JL, Zhao Y, Hill RL: Porcine submaxillary mucin contains a cystine-rich, carboxyl-terminal domain in addition to a highly repetitive, glycosylated domain. J Biol Chem 266: 9678–9686, 1991Google Scholar
  68. 68.
    Moschera J, Pigman W: The isolation and characterization of rat sublingual mucus-glycoprotein. Carbohydr Res 40: 53–67, 1975Google Scholar
  69. 69.
    Gerken TA, Gupta R, Jentoft N: Anovel approach for chemically deglycosylatingO-linked glycoproteins. The deglycosylation of submaxillary and respiratory mucins. Biochemistry 31: 639–648, 1992Google Scholar
  70. 70.
    Bhargava AK, Woitach JT, Davidson EA, Bhavanandan VP: Cloning and cDNA sequence of a bovine submaxillary gland mucin-like protein containing two distinct domains. Proc Natl Acad Sci USA 87: 6798–6802, 1990Google Scholar
  71. 71.
    Bobek LA, Tsai H, Biesbrock AR, Levine MJ: Molecular cloning, sequence, and specificity of expression of the gene encoding the low molecular weight human salivary mucin. J Biol Chem 268: 20563–20569, 1993Google Scholar
  72. 71a.
    Albone EF, Hagen FK, Van Wuyckhuyse BC, Tabak LA: Molecular cloning of a rat submendibular gland epemucin. J Biol Chem 269: 16845–16852, 1994Google Scholar
  73. 72.
    Gendler SJ, Lancaster CA, Taylor-Papadimitriou J, Duhig T, Peat N, Burchell J, Pemberton L, Lalani E-N, Wilson D: Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem 265: 15286–15293, 1990Google Scholar
  74. 73.
    Kim YS, Gum JR Jr, Byrd JC, Toribara NW: The structure of human intestinal apomucins. Am Rev Respir Dis 144: S10-S14, 1991Google Scholar
  75. 74.
    Porchet N, Nguyen van Cong, Dufosse J, Audie JP, Guyonnet-Duperat V, Gross MS, Denis C, Degand P, Bernheim A, Aubert JP: Molecular cloning and chromosomal localization of a novel human tracheo-bronchial mucin cDNA containing tandemly repeated sequences of 48 base pairs. Biochem Res Commun 175: 414–422, 1991Google Scholar
  76. 75.
    Lan MS, Batra SK, Qi WN, Metzgar RS, Hollingsworth MA: Cloning and sequencing of human pancreatic tumor mucin cDNA. J Biol Chem 265: 15294–15299, 1990Google Scholar
  77. 76.
    Gerard C, Eddy RL Jr, Shows TB: The core polypeptide of cystic fibrosis tracheal mucin contains a tandem repeat structure. J Clin Invest 86: 1921–1927, 1990Google Scholar
  78. 77.
    Gum JR, Byrd JC, Hicks JW, Toribara NW, Lamport DTA, Kim YS: Molecular cloning of human intestinal mucin cDNAs. Sequence analysis and evidence for genetic polymorphism. J Biol Chem 264: 6480–6487, 1989Google Scholar
  79. 78.
    Gum JR, Hicks JW, Swallow DM, Lagace RL, Byrd JC, Lamport DTA, Siddiki B, Kim YS: Molecular cloning of cDNAs derived from a novel human intestinal mucin gene. Biophys Res Commun 171:407–415, 1990Google Scholar
  80. 79.
    Toribara NW, Roberton AM, Ho SB, Kuo WL, Gum E, Hicks JW, Gum JR Jr, Byrd JC, Siddiki B, Kim YS: Human gastric mucin. J Biol Chem 268:5879–5885, 1993Google Scholar
  81. 80.
    Gum JR Jr, Hicks JW, Toribara NW, Rothe EM, Lagace RE, Kim YS: The humanMUC2 intestinal mucin has cysteine-rich subdomains located both upstream and downstream of its central repetitive region. J Biol Chem 267: 21375–21383, 1992Google Scholar
  82. 81.
    Pigman W, Moschera J, Weis M, Tettamanti G: The occurrence of repetitive glycopeptide sequences in bovine submaxillary glycoprotein. Eur J Biochem 32:148–154, 1973Google Scholar
  83. 82.
    Downs F, Peterson C, Murty VLN, Pigman W: Quantitation of the β-elimination reaction as used on glycoproteins. Int J Peptide Protein Res 10: 315–322, 1977Google Scholar
  84. 83.
    Haltiwanger RS, Kelly WG, Roquemore EP, Blomberg MA, Dong LYD, Kreppel L, Chou TY, Hart GW: Glycosylation of nuclear and cytoplasmic proteins is ubiquitous and dynamic. Biochem Soc Trans 20:264–269, 1992Google Scholar
  85. 84.
    Schauer R: Sialic acids as antigenic determinants of complex carbohydrates. Adv Exp Med Biol 228:47–72, 1988Google Scholar
  86. 85.
    Stults CLM, Sweeley CC, Macher BA: Glycosphingolipids: structure, biological source, and properties. Methods Enzymol 179:167–214, 1989Google Scholar
  87. 86.
    Corfield AP, Wagner SA, Clamp JR, Kriaris MS, Hoskins LC: Mucin degradation in the human colon: production of sialidase, sialateO-acetylesterase,N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect Immun 60:3971–3978, 1992Google Scholar
  88. 87.
    Slomiany BL, Slomiany A, Herp A: Studies on the occurrence of disialosyl groups in glycoproteins of salivary glands. Eur J Biochem 90:255–266, 1978Google Scholar
  89. 88.
    Tsai H, Sunderland HD, Gibson GR, Hart CA, Rhodes JM: A novel mucin sulphatase from human faeces: its identification, purification and characterization. Clin Sci 82:447–454, 1992Google Scholar
  90. 89.
    Malinowski CE, Herp A: Purification and partial characterization of rat submaxillary mucin. Comp Biochem Physiol 69:605–609, 1981Google Scholar
  91. 90.
    Dekker J, Strous GJ: Covalent oligomerization of rat gastric mucin occurs in the rough endoplasmic reticulum, isN-glycosylation-dependent, and precedes initialO-glycosylation. J Biol Chem 265:18116–18122, 1990Google Scholar
  92. 91.
    Strous GJ, Dekker J: Mucin-type glycoproteins. CR Biochem. Mol Biol 27:57–92, 1992Google Scholar
  93. 92.
    Schachter H, Brockhausen I: The biosynthesis of serine (threonine)-N-acetylgalactosamine-linked carbohydrate moieties. In: H.J. Allen and E.C. Kisailus (eds). Glycoconjugates. Marcel Dekker., New York, 1992, pp 263–332Google Scholar
  94. 93.
    Jansson PE, Kenne L, Widmalm G: Computer-assisted structural analysis of oligosaccharides using CASPER. Analyt Biochem 194:11–17, 1991Google Scholar
  95. 94.
    Laine RA: Mass spectrometry of carbohydrates. In: H.J. Allen and E.C. Kisailus (eds). Glycoconjugates. Marcel Dekker, New York, 1992, pp 103–120Google Scholar
  96. 95.
    Serianni AS: Nuclear magnetic resonance approaches to oligosaccharide structure elucidation. In: H.J. Allen and E.C. Kisailus (eds). Glycoconjugates. Marcel Dekker, New York, 1992, pp 71–102Google Scholar
  97. 96.
    Edge CJ, Rademacher TW, Wormald MR, Parekh RB, Butters TD, Wing DR, Dwek RA: Fast sequencing of oligosaccharides: the reagent-arrayanalysis method. Proc Natl Acad Sci USA 89:6338–6342, 1992Google Scholar
  98. 97.
    Dwek RA, Edge CJ, Harvey DJ, Wormald MR, Parekh RB: Analysis of glycoprotein-associated oligosaccharides. Annu Rev Biochem 62: 65–100, 1993Google Scholar
  99. 98.
    Dell A, Jones C (co-ordinators). Mass spectrometry and N.M.R. Spectroscopy. Carbohydr Res 221:1–268, 1991Google Scholar
  100. 99.
    Wu AM, Slomiany A, Herp A, Slomiany BL: Structural studies on the carbohydrate units of the armadillo submandibular glycoprotein. Biochim Biophys Acta 578:297–303, 1979Google Scholar
  101. 100.
    Bertolini M, Pigman W: The existence of oligosaccharides in bovine and ovine submaxillary mucins. Carbohydr Res 14:53–63, 1970Google Scholar
  102. 101.
    Tsuji T, Osawa T: Carbohydrate structures of bovine submandibular mucin. Carbohydr Res 151:391–402, 1986Google Scholar
  103. 102.
    Savage AV, Donohue JJ, Koeleman CAM, van den Eijnden DH: Structural characterization of sialylated tetrasaccharides and pentasaccharides with blood group H and Lex activity isolated from bovine submaxillary mucin. Eur J Biochem 193:837–843, 1990Google Scholar
  104. 103.
    Savage AV, D'Arcy SMT, Donoghue CM: Structural characterization of neutral oligosaccharides with blood group A and H activity isolated from bovine submaxillary mucin. Biochem J 279:95–103, 1991Google Scholar
  105. 104.
    Savage AV, Donoghue CM, D'Arcy SM, Koeleman CAM, van den Eijnden DH: Structure, determination of five sialylated oligosaccharides with core types 1,3 or 5 isolated from bovine submaxillary mucin. Eur J Biochem 192:427–432, 1990Google Scholar
  106. 105.
    Chai W, Hounsell EF, Cashmore GC, Rosankiewicz JR, Bauer ChJ, Feeney J, Feizi T, Lawson AM: Neutral oligosaccharides of bovine submaxillary mucin. Eur J Biochem 203:257–268, 1992Google Scholar
  107. 106.
    Slomiany A, Slomiany BL: Structures of the acidic oligosaccharides isolated from rat sublingual glycoprotein. J Biol Chem 253: 7301–7306, 1978Google Scholar
  108. 107.
    Slomiany A, Okazaki K, Piotrowski J, Slomiany BL:In vitro sulfation of sublingual salivary gland mucin: structures of35S-labeled oligosaccharides. Biochem Int 18:589–597, 1989Google Scholar
  109. 108.
    Carlson DM: Structures and immunochemical properties of oligosaccharides isolated from pig submaxillary mucins. J Biol Chem 243: 616–626, 1968Google Scholar
  110. 109.
    Slomiany BL, Murty VLN, Slomiany A: Structural features of carbohydrate chains in human salivary mucins. Int J Biochem 25:259–265, 1993Google Scholar
  111. 110.
    Dekker J, Van Beurden-Lamers WMO, Strous GJ: Biosynthesis of gastric mucus glycoproteins of the rat. J Biol Chem 264:10431–10437, 1989Google Scholar
  112. 111.
    Cummings RD: Synthesis of asparagine-linked oligosaccharides: pathways genetics, and metabolic regulation. In: J.J. Allen and E.C. Kisailus (eds). Glycoconjugates. Marcel Dekker, New York, 1992, pp 333–360Google Scholar
  113. 112.
    Robbins PW, Lippman F: Isolation and identification of active sulfate. J Biol Chem 229:837–851, 1957Google Scholar
  114. 113.
    Wilson IBH, Gavel Y, von Heijne G: Amino acid distributions aroundO-linked glycosylation sites. Biochem J 275:529–534, 1991Google Scholar
  115. 114.
    Wang Y, Abernethy JL, Eckhardt AE, Hill RL: Purification and characterization of a UDP-GalNAc: polypeptideN-acetylgalactosaminyl transferase specific for glycosylation of threonine residues. J Biol Chem 267: 12709–12716, 1992Google Scholar
  116. 115.
    Devine PL, McKenzie IFC: Mucins: Structure, function and associations with malignancy. BioEssays 14:619–625, 1992Google Scholar
  117. 116.
    Ropp PA, Little MR, Cheng PW: Mucin biosynthesis: purification and characterization of a mucin β6N-acetylglucosaminyltransferase. J Biol Chem 266:23863–23871, 1991Google Scholar
  118. 117.
    Chandrasekaran EV, Jain RK, Matta KL: Mucin biosynthesis revisited. J Biol Chem 267:19929–19937, 1991Google Scholar
  119. 118.
    Maemura K, Fukuda M: Poly-N-acetyllactosaminylO-glycans attached to leukosialin. J Biol Chem 267:24379–24386, 1992Google Scholar
  120. 119.
    Berg EL, Robinson MK, Mansson O, Butcher EC, Magnani JL: A carbohydrate domain common to both sialyl Lea and sialyl Lex is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1. J Biol Chem 266:14869–14872, 1991Google Scholar
  121. 120.
    Muramatsu T: Carbohydrate signals in metastasis and prognosis of human carcinomas. Glycobiology 3:291–296, 1993Google Scholar
  122. 121.
    Springer GF: T and Tn, general carcinoma autoantigens. Science 224: 1198–1206, 1984Google Scholar
  123. 122.
    Itzkowitz SH, Kjeldsen T, Friera A, Hakomori S, Yang U, Kim YS: Expression of Tn, sialosyl-Tn, and T antigens in human pancreas. Gastroenterology 100:1691–1700, 1991Google Scholar
  124. 123.
    Schwartz B, Bresalier RS, Kim YS: The role of mucin in colon-cancer metastasis. Int J Cancer 52:60–65, 1992Google Scholar
  125. 124.
    Ogata S, Maimonis PJ, Itzkowitz SH: Mucins bearing the cancer-associated sialosyl-Tn antigen mediate inhibition of natural killer cell cytotoxicity. Cancer Res 52:4741–4746, 1992Google Scholar
  126. 125.
    Singhal A, Fohn M, Hakomori S: Induction of α-N-acetylgalactosamine-O-serine/threonine (Tn) antigen-mediated cellular immune response for active immunotherapy in mice. Cancer Res 51:1406–1411, 1991Google Scholar
  127. 126.
    Bhavanandan VP: Cancer-associated mucins and mucin-type glycoproteins. Glycobiology 1:493–503, 1991Google Scholar
  128. 127.
    Paulson JC, Colley KJ: Glycosyltransferases. J Biol Chem 264: 17615–17618, 1989Google Scholar
  129. 128.
    Brockhausen I, Möller G, Merz G, Adermann K, Paulsen H: Control of mucin synthesis: the peptide portion of syntheticO-glycopeptide substrates influences the activity ofO-glycan core 1 UDP galactose:N-acetylαgal-actosaminyl-R β3-galactosyltransferase. Biochemistry 29:10206–10212, 1990Google Scholar
  130. 129.
    Wu-Wang CY, Wang SL, Yao P, Slomiany A, Slomiany BL: Prostaglandin E2 receptor of rat submandibular salivery glands. Arch Oral Biol 36: 637–640, 1991Google Scholar
  131. 130.
    Slomiany BL, Sengupta S, Piotrowski E, Lopez RA, Slomiany A: Role of adrenergic and cholinergic mediators in salivary phopholipids secretion. Biochim Biophys Acta 1124:171–177, 1992Google Scholar
  132. 131.
    Carraway KL, Hull SR:O-glycosylation pathway for mucin type glycoproteins. BioEssays 12:223–230, 1989Google Scholar
  133. 132.
    Lis H, Sharon N: Protein glycosylation. Structural and functional aspects. Eur J Biochem 218:1–27, 1993Google Scholar
  134. 133.
    Feizi T: Demonstration by monoclonal antibodies that carbohydrate structures of glycoproteins and glycolipids are oncodevelopmental antigens. Nature 314:53–57, 1985Google Scholar
  135. 134.
    Ho SB, Niehans GA, Lyftogt C, Yan PS, Cherwitz DL, Gum ET, Dahiya R, Kim YS: Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res 53:641–651, 1993Google Scholar
  136. 135.
    Karn RC: Genetic control of mammalian salivary proteins. In: D.B. Ferguson (ed). Aspects of Oral Molecular Biology 8:117–140, 1991Google Scholar
  137. 136.
    Karlsson KA, Strömberg N: Overlay and solid-phase analysis of glycolipid receptors for bacteria and viruses. Methods Enzymol 138:220–232, 1987Google Scholar
  138. 137.
    Shomers JP, Tabak LA, Levine MJ, Mandel ID, Hay DI: Properties of cysteine-containing phosphoproteins from human submandibular-sublingual saliva. J Dent Res 61:397–399, 1982Google Scholar
  139. 138.
    Murakami Y, Nagata H, Amano A, Takagaki M, Shizukuishi S, Tsunemitsu A, Aimoto S: Inhibitory effects of human salivary histatins and lysozyme on coaggregation betweenPorphyromonas gingivalis andStreptococcus mitis. Infec Immun 59:3284–3286, 1991Google Scholar
  140. 139.
    Gibbons RJ, Hay DI, Cisar JO, Clark WB: Adsorbed salivary prolinerich protein 1 and statherin: receptors for type 1 fimbriae ofActinomyces viscosus T14V-J1 on apatite surfaces. Infect Immun 56:2990–2993, 1988Google Scholar
  141. 140.
    Scannapieco FA, Bhanadary K, Ramasubbu N, Levine MJ: Structural relationship between the enzymatic and streptococcal binding sites of human salivary α-amylase. Biochem Biophys Res Commun 173: 1109–1115, 1990Google Scholar
  142. 141.
    Lamberts BL, Pruitt KM, Pederson ED, Golding MP: Comparison of salivary peroxidase system components in caries-free and caries-active naval recruites. Caries Res 18:488–494, 1984Google Scholar
  143. 142.
    Williams RC, Gibbons RJ: Inhibition of bacterial adherence by secretory immunoglobulin A: a mechanism of antigen disposal. Science 177:697–699, 1972Google Scholar
  144. 143.
    Biesbrock AR, Reddy MS, Levine MJ: Interaction of a salivary mucinsecretory immunoglobulin A complex with mucosal pathogens. Infect Immun 59:3492–3497, 1991Google Scholar
  145. 144.
    Hatton MN, Loomis RE, Levine MJ, Tabak LA: Masticatory lubrication. Biochem J 230:817–820, 1985Google Scholar
  146. 145.
    Gillece-Castro BL, Prakobphol A, Burlingame AL, Leffler H, Fisher SJ: Structure and bacterial receptor activity of a human salivary proline-rich glycoprotein. J Biol Chem 266:17358–17368, 1991Google Scholar
  147. 146.
    Demuth DR, Golub EE, Malamud D: Streptococcal-host interactions. Structural and functional analysis of aStreptococcus sanguis receptor for a human salivary glycoprotein. J Biol Chem 265:7120–7126, 1992Google Scholar
  148. 147.
    Murray PA, Prakobphol A, Lee T, Hoover CI, Fisher JT: Adherence of oral streptococci to salivary glycoproteins. Infect Immun 60:31–38, 1992Google Scholar
  149. 148.
    Brady LJ, Piacentini DA, Crowley PJ, Oyston PCF, Bleiweis AS: Differentiation of salivary agglutinin-mediated adherence and aggregation of mutans adhesin P1. Infect Immun 60:1008–1017, 1992Google Scholar
  150. 149.
    Levine MJ, Reddy MS, Tabak LA, Loomis RE, Bergley EJ, Jones PC, Cohen RE, Stinson MW, Al-Hashimi I: Structural aspects of salivary glycoproteins. J Dent Res 66:436–441, 1987Google Scholar
  151. 150.
    Hasty DL, Ofek I, Courtney HS, Doyle RJ: Multiple adhesins of streptococci. Infect Immun 60:2147–2152, 1992Google Scholar
  152. 151.
    Komiyama K, Habbick BF, Tumber SK: Role of sialic acid in salivamediated aggregation ofPseudomonas aeruginosa isolated from cystic fibrosis patients. Infect Immun 55:2364–2369, 1987Google Scholar
  153. 152.
    Reddy MS, Levine MJ, Paranchych W: Low-molecular-mass human salivary mucin, MG2: structure and binding ofPseudomonas aeruginosa. C.R. Oral Biol Med 4:315–323, 1993Google Scholar
  154. 153.
    Murray PA, Levine MJ, Tabak LA, Reddy MS: Specificity of salivarybacterial interactions. II. Evidence for a lectin onStreptococcus sanguis with specificity for NeuAcα2,3Galβl, 3 GalNAc. Biochem Biophys Res Commun 106:390–396, 1992Google Scholar
  155. 154.
    Ligtenberg AJM, Walgreen-Weterings E, Veerman ECI, de Soet JJ, de Graaff J, Nieuw Amerongen AV: Influence of saliva on aggregation and adherence ofStreptococcus, gordonii HG222. Infec Immun 60: 3878–3884, 1992Google Scholar
  156. 155.
    Liukkonen J, Haataja S, Tikkanen K, Kelm S, Finne J: Identification ofN-acetylneuraminylα2→3poly-N-acetyllactosamine glycans as the receptor of sialic acid bindingStreptococcus suis strains. J Biol Chem 267:21105–21111, 1992Google Scholar
  157. 156.
    Wu JH, Herp A, Wu AM: Defining carbohydrate specificity ofRicinus communis agglutinin as Gal\1, 4GlcNAc (II)>Galβ1, 3GlcNAc (I)>Galα1,3 Gal(B)>Galβ1,3GaINAc(T). Mol Immunol 30:333–339, 1993Google Scholar
  158. 157.
    Ryan CA: Oligosaccharide signals: From plant defense to parasite offense. Proc Natl Acad Sci USA 91:1–2, 1994Google Scholar
  159. 158.
    Lean CL, Mackinnon WB, Delikatny EJ, Whitehead RH, Mountford CE: Cell-surface of human malignant colorectal cells. Biochemistry 31: 11095–11105, 1992Google Scholar
  160. 159.
    Chaiken I, Rose S, Karlsson R: Analysis of macromolecular interactions using immobilized ligands. Analyt Biochem 201:197–210, 1992Google Scholar
  161. 160.
    Snyder CE, Nadziejko CE, Herp A: Human bronchial explants in long-term culture: establishing a baseline for secretion.In vitro 20:95–102, 1984Google Scholar
  162. 161.
    Yamaya M, Finkbeiner WE, Chun SY, Widdicombe JH: Differentiated structure and function of cultures of human tracheal epithelium. Am J Physiol 262:L713-L724, 1992Google Scholar
  163. 162.
    Stanley P: Glycosylation engineering. Glycobiology 2:99–107, 1992Google Scholar

Copyright information

© Kluwer Academic Publishers 1994

Authors and Affiliations

  • Albert M. Wu
    • 1
  • Gyorgy Csako
    • 2
  • Anthony Herp
    • 1
  1. 1.Glycoimmunochemistry Research LaboratoryChang-Gung College of Medicine and TechnologyTaoyuanTaiwan
  2. 2.Clinical Pathology Department, W.G. Magnuson Clinical CenterNational Institutes of HealthBethesdaUSA

Personalised recommendations