Zeitschrift für Parasitenkunde

, Volume 56, Issue 1, pp 81–92 | Cite as

A morphological and cytochemical study of sperm development inHymenolepis diminuta

  • John M. Robinson
  • Burton J. Bogitsh


Sperm development inHymenolepis diminuta was studied by light and electron microscopy and cytochemical techniques. Spermatogenesis involves a complex series of events in which syncytia are formed. At the light-microscope level, spermatozoa formation was first observed as a ‘threading out’ of the peripheral cytoplasm of the 64-nuclear syncytium. Electronmicroscopic studies confirmed and expanded the light-microscopic observations. Cytochemical and morphological observations demonstrated that mature spermatozoa ofHymenolepis diminuta lack mitochondria. Glycogen was present only in mature spermatozoa and only in the form of β-particles. Acid phosphatase was demonstrated in the axoneme of mature spermatozoa.


Electron Microscopy Acid Phosphatase Electronmicroscopic Study Morphological Observation Mature Spermatozoon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, W.A., Personne, P.: The localization of glycogen in the spermatozoa of various invertebrate and vertebrate species. J. Cell Biol.44, 29–51 (1970)Google Scholar
  2. Baccetti, B., Dallai, R.: The spermatozoon of arthropoda. XXVII. Uncommon axoneme patterns in different species of cecidomyid flies. J. Ultrastruct. Res.55, 50–69 (1976)Google Scholar
  3. Barka, T., Anderson, P.J.: Histochemical methods for acid phosphatase using hexazonium pararosanilin as coupler. J. Histochem. Cytochem.10, 741–753 (1962)Google Scholar
  4. Burton, P.R.: Fine structure of the reproductive system of a frog lung fluke. III. The spermatozoon and its differentiation. J. Parasitol.58, 68–83 (1972)Google Scholar
  5. Cheng, T.C., Dyckman, E.: Sites of glycogen deposition inHymenolepis diminuta during the growth phase in the rat host. Z. Parasitenkd.24, 27–48 (1964)Google Scholar
  6. Featherston, D.W.:Taenia hydatigena. III. Light and electron microscope study of spermatogenesis. Z. Parasitenkd.37, 148–168 (1971)Google Scholar
  7. Grant, W.C., Harkema, R., Muse, K.E.: Ultrastructure ofPharyngostomoides procyonis Harkema 1942 (Diplostomatidae).I. Observations on the male reproductive system. J. Parasitol.62, 39–49 (1976)Google Scholar
  8. Gresson, R.A.R.: Spermatogenesis of Cestoda. Nature (Lond.),194, 397–398 (1962)Google Scholar
  9. Halton, D.W., Hardcastle, A.: Spermatogenesis in a monogeneanDiclidophora merlangi. Int. J. Parasitol.6, 43–53 (1976)Google Scholar
  10. Hedrick, R.M., Daugherty, J.W.: comparative histochemical studies on cestodes. I. The distribution of glycogen inHymenolepis diminuta andRaillietina cesticillus. J. Parasitol.43, 497–504 (1967)Google Scholar
  11. Kazacos, K., mackiewicz, J.S.: Spermatogenesis inHunterella nodulosa Mackiewicz and McCrae, 1962 (Cestoidea: Caryophyllidea). Z. Parasitenkd.,38, 21–31 (1972)Google Scholar
  12. Lumsden, R.D.: Microtubules in the peripheral cytoplasm of cestode spermatozoa. J. Parasitol.51, 929–931 (1965a).Google Scholar
  13. Lumsden, R.D.: Macromolecular structure of glycogen in some cyclophyllidean and trypanorhynch cestodes. J. Parasitol.51, 501–515 (1965b)Google Scholar
  14. Morseth, D.J.: Sperm tail fine structure ofEchinococcus granulosus andDicrocoelium dendriticum. Exp. Parasitol.24, 47–53 (1969)Google Scholar
  15. Moses, M.J.: Synaptinemal Complex. Ann. Rev. Genet.2, 363–412 (1968)Google Scholar
  16. Pearse, A.G.E.: Histochemistry: Theoretical and applied. Vol. 2, 3rd ed., Baltimore: Williams and Wilkins 1972Google Scholar
  17. Rosario, B.: An electron microscope study of spermatogenesis in cestodes. J. Ultrastruct. Res.11, 412–427 (1964)Google Scholar
  18. Rybicka, K.: Embryogenesis in cestodes. In: Advances in Parasitology, B. Dawes, ed., Vol. 4, p. 107–178. New York: Academic Press 1966Google Scholar
  19. Rybicka, K.: Embryogenesis inHymenolepis diminuta. IV. Distribution of succinic-dehydrogenase, reduced form of nicotinamide-adenine dinucleotide oxido reductase, and cytochrome oxidase. Exp. Parasitol.20, 255–262 (1967a)Google Scholar
  20. Rybicka, K.: Embryogenesis inHymenolepis diminuta. II. Glycogen distribution in the embryos. Exp. Parasitol.20, 98–105 (1967b)Google Scholar
  21. Sato, M., Motow, O., Sakoda, K.: Electron microscopic study of spermatogenesis in the lung fluke (Paragonimus miyazakii). Z. Zellforsch.77, 232–243 (1967)Google Scholar
  22. Seligman, A.M., Karnovsky, M.J., Wasserkrug,H., Hanker, J.S.: Non droplet ultrastructural demonstration of cytochrome oxidase activity with a polymerising osmophilic reagent, diaminobenzidine (DAB). J. Cell Biol.38, 1–14 (1968)Google Scholar
  23. Silveira, M.: Intraaxonemal glycogen in “9+1” flagella of flatworms. J. Ultrastruct. Res.44, 253–264 (1973)Google Scholar
  24. Swiderski, Z.: The fine structure of the spermatozoon of sheep tapeworms,Moniezia expansa (Rud., 1810) (Cyclophyllidea, Anoplocephalidae). Zool. Poloniae18, 475–486 (1968)Google Scholar
  25. Thiéry, J.P.: Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J. Microscop.6, 987–1018 (1967)Google Scholar
  26. Von Bonsdorff, C., Telkka, A.: The spermatozoon flagella inDiphyllobothrium latum (Fish tapeworm). Z. Zellforsch.66, 643–648 (1965)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • John M. Robinson
    • 1
  • Burton J. Bogitsh
    • 1
  1. 1.Department of BiologyVanderbilt UniversityNashvilleUSA

Personalised recommendations