Molecular and Cellular Biochemistry

, Volume 145, Issue 1, pp 29–37 | Cite as

A glycoprotein multimer fromBacillus thuringiensis sporangia: Dissociation into subunits and sugar composition

  • M. García-Patrone
  • Juana S. Tandecarz


Two glycoproteins (205 and 72 kDa) were found inBacillus thuringiensis sporangia. They were predominantly localized in the exosporium and/or the spore coat, although a small proportion was also found in membranes. A method for the dissociation of hydrophobic aggregates that resist the usual conditions of SDS-PAGE is described. Using this method we established that the 205 kDa glycoprotein is a multimer of the 72 kDa one. Deglycosylation of the 205 kDa and 72 kDa glycoproteins with trifluoromethanesulfonic acid yielded a 54 kDa polypeptide in both cases. At least three species of oligosaccharides were O-glycosidically linked to serines of the 54 kDa polypeptide chain. One of the oligosaccharides had N-acetylgalactosamine at the reducing end, rhamnose and a component not yet identified.

Key Words

Bacillus thuringiensis sporangium glycoprotein dissociation oligosaccharides 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Masson P: Les glycoprotéins bacteriénnes. Bull Inst Pasteur, 87: 207–228, 1989Google Scholar
  2. 2.
    Messener P, Sleytr UB: Bacterial surface layer glycoproteins. Glycobiol. 1: 545–551, 1991Google Scholar
  3. 3.
    Mescher MF, Strominger JL: Purification and characterization of a prokariotic glycoprotein from the cell envelope ofHalobacterium salinarium. J Biol Chem 251: 2005–2014, 1976Google Scholar
  4. 4.
    Wieland F: Structure and biosynthesis of prokaryotic glycoproteins. Biochimie 70: 1493–1504, 1988Google Scholar
  5. 5.
    Messner P, Christian R, Kolbe J, Schulz G, Sleytr UB: Analysis of a novel linkage unit of O-linked carbohydrates from the crystalline surface layer glycoprotein ofClostridium thermohydrosulfuricum S102-70. J Bacteriol 174: 2236–2240, 1992Google Scholar
  6. 6.
    Bulla LA, Kramer KJ, Davidson LI: Characterization of the entomocidal parasporal crystal ofBacillus thuringiensis. J Bacteriol 130: 375–383, 1977Google Scholar
  7. 7.
    Tyrell DJ, Bulla LA, Andrews RE, Kramer KJ, Davidson LI, Nordin P: Comparative biochemistry of entomocidal parasporal analysis of selectedBacillus thuringiensis strains. J Bacteriol 145: 1052–1062, 1981Google Scholar
  8. 8.
    Muthukumar G, Nickerson KW: The glycoprotein toxin ofBacillus thuringiensis susp.israelensis indicates a lectin like receptor in the larval mosquito gut. Appl Environ Microbiol 53: 2650–2655, 1987Google Scholar
  9. 9.
    Pfannenstiel MA, Muthukumar GA, Couche GA, Nickerson KW: Amino sugars in the glycoprotein toxin fromBacillus thuringiensis subsp.israelensis. J Bacteriol 169: 796–801, 1987Google Scholar
  10. 10.
    Cabrera Beaman T, Pankratz HS, Gerhardt P: Paracrystalline sheets reaggregated from solubilized exosporium ofBacillus ceneus. J Bacteriol 101: 320–324, 1971Google Scholar
  11. 11.
    Nickerson KW, St Julian G, Bulla LA: Physiology of sporeforming bacteria associated with insects: radiorespirometry survey of carbohydrate metabolism in the 12 serotypes ofBacillus thuringiensis. Appl Microbiol 28: 129–132, 1974Google Scholar
  12. 12.
    Betchel DB, Bulla LA: Electron microscope study of sporulation and parasporal crystal formation inBacillus thuringiensis. J Bacteriol 127: 1472–1481, 1976Google Scholar
  13. 13.
    Tai PC, Caulfield MP, Davies BD: Synthesis of proteins by membrane associated polysomes and free polysomes. Methods Enzymol 97: 62–76, 1983Google Scholar
  14. 14.
    Suissa M: Spectrophotometric quantitation of silver grains eluted from autoradiograms. Anal Biochem 133: 511–514, 1983Google Scholar
  15. 15.
    Studier FW: Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol 79: 237–248, 1973Google Scholar
  16. 16.
    Laskey LA, Mills AD: Quantitative film detection of [3H] and [14C] in polyacrylamide gels by fluorography. Eur J Biochem 56: 335–341, 1975Google Scholar
  17. 17.
    Gershoni JM, Bayer EA, Wilchek M: Blot analyses of glycoconjugates: enzyme-hydrazide — a novel reagent for the detection of aldehydes. Anal Biochem 146: 59–63, 1985Google Scholar
  18. 18.
    Tanaka K, Pigman W: Improvements in hydrogenation procedure of 0-threonine glycosidic linkages in bovine submaxillary mucin. J Biol Chem 240: 1487–1488, 1965Google Scholar
  19. 19.
    Hennesey JP, Scarborough GA: An optimized procedure for sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of hydrophobic peptides from an integral membrane protein. Anal Biochem 176: 284–289, 1989Google Scholar
  20. 20.
    Yamashita K, Mizuochi T, Kobata A: Analysis of oligosaccharides by gel filtration. Methods Enzymol 83: 10–126, 1982Google Scholar
  21. 21.
    Lederkremer GZ, Parodi AJ: 3-0-Methylation of mannose residues. J Biol Chem 259: 12514–12518, 1984Google Scholar
  22. 22.
    Edge ASB, Faltynek CR, Hof L, Reichert JE, Weber P: Deglycosylation of proteins by trifluoromethanesulfonic acid. Anal Biochem 118: 131–137, 1981Google Scholar
  23. 23.
    Olden K, Bernard BA, Humphries MJ, Yeo T-K, Yeo K-T, White SL Newton SA, Bauer HC, Parent JB: Function of glycoprotein glycans. Trends Biochem Sci 10: 78–82, 1985Google Scholar

Copyright information

© Kluwer Academic Publishers 1995

Authors and Affiliations

  • M. García-Patrone
    • 1
  • Juana S. Tandecarz
    • 2
    • 3
  1. 1.Instituto de Investigaciones Bioquímicas ‘Fundación Campomar’Buenos AiresArgentina
  2. 2.Instituto de Inverstigaciones Bioquímicas, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresArgentina
  3. 3.Instituto de Investigaciones Bioquímicas Buenos AiresCONICETArgentina

Personalised recommendations