Advertisement

Catalysis of hydroperoxide decomposition by sulfur-containing metal chelates

  • V. G. Vinogradova
Physical Chemistry
  • 19 Downloads

Conclusions

  1. 1.

    The compounds Cu(Dtc)2, Ni(Dtc)2, and Zn(Dtc)2 catalyze the decomposition ofα-phenylethyl hydroperoxide into free radicals and molecular products at 30 and 75°C (Dtc is N,N-diethyldithiocarbamate).

     
  2. 2.

    The products resulting from reactions of these dithiocarbamates also catalyze the decomposition ofα-phenylethyl hydroperoxide.

     
  3. 3.

    Catalytic decomposition ofα-phenylethyl hydroperoxide modifies the catalyst itself, leading to preferential reaction through a molecular decomposition mechanism.

     
  4. 4.

    The fact that stable RNO. radicals promoteα-phenylethyl hydroperoxide decomposition in the presence of Cu(Dtc)2 and Zn(Dtc)2, and inhibit decomposition in the presence of Cu(Tpa)2, hinders any attempt to use RNO. as radical acceptors in these systems [Tpa is bis (α-thiopicolinanilide)].

     

Keywords

Catalysis Free Radical Hydroperoxide Metal Chelate Dithiocarbamate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. G. Vinogradova, Z. K. Maizus, and N. M. Émanuél', Dokl. Akad. Nauk SSSR,188, 616 (1969).Google Scholar
  2. 2.
    V. G. Vinogradova, A. N. Zverev, Z. K. Maizus, and N. M. Émanuél', Neftekhimiya,15, 397 (1975).Google Scholar
  3. 3.
    A. N. Zverev, V. G. Vinogradova, and Z. K. Maizus, Izv. Akad. Nauk SSSR, Ser. Khim., 2224 (1975).Google Scholar
  4. 4.
    I. V. Shkhiyants, M. A. Dzyubina, V. V. Sher, and P. I. Sanin, Neftekhimiya,13, 571 (1973).Google Scholar
  5. 5.
    I. V. Shkhiyants, Dissertation, Moscow, 1972.Google Scholar
  6. 6.
    J. A. Howard and J. H. B. Chenier, Can. J. Chem.,54, 382 (1976).Google Scholar
  7. 7.
    V. G. Vinogradova and Z. K. Maizus, Neftekhimiya,10, 717 (1970).Google Scholar
  8. 8.
    I. V. Shkhiyants, M. A. Dzyubina, N. V. Voevoda, V. V. Sher, and P. I. Sanin, Neftekhimiya,13, 749 (1973).Google Scholar
  9. 9.
    V. G. Vinogradova and Z. K. Maizus, Kinet. Katal.,13, 298 (1972).Google Scholar
  10. 10.
    A. B. Shapiro and É. G. Rozantsev, Vysokomol. Soedin.,12, 2673 (1973).Google Scholar
  11. 11.
    G. A. Kovtun, A. L. Aleksandrov, and V. A. Golubev, Izv. Akad. Nauk SSSR, Ser. Khim., 2197 (1974).Google Scholar
  12. 12.
    L. A. Smurova, A. B. Gagarina, and N. M. Émanuél', Dokl. Akad. Nauk SSSR,230, 904 (1976).Google Scholar
  13. 13.
    N. D. Iordanov, Dissertation, Sofia, 1971.Google Scholar
  14. 14.
    V. G. Vinogradova and K. I. Zamaraev, Teor. Eksp. Khim.,11, 278 (1972).Google Scholar
  15. 15.
    L. I. Matienko, I. P. Skibida, and Z. K. Maizus, Izv. Akad. Nauk SSSR, Ser. Khim., 1322 (1975).Google Scholar
  16. 16.
    L. I. Matienko and Z. K. Maizus, Izv. Akad. Nauk SSSR, Ser. Khim., 1524 (1972).Google Scholar
  17. 17.
    É. G. Rozantsev and V. D. Sholle, Usp. Khim.,40, 429 (1971).Google Scholar

Copyright information

© Plenum Publishing Corporation 1978

Authors and Affiliations

  • V. G. Vinogradova
    • 1
  1. 1.Institute of Chemical PhysicsAcademy of Sciences of the USSRMoscow

Personalised recommendations