Skip to main content
Log in

Ontogeny of inflammatory cell responsiveness

Superoxide anion generation by phorbol ester-stimulated fetal, neonatal, and adult bovine neutrophils

  • Original Articles
  • Cathepsin G Degrades Denatured Collagen
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Newborn calves, like human infants, are uniquely susceptible to bacterial infections. Part of this increased susceptibility may be related to defects in newborn polymorphonuclear leukocyte (PMN) defensive functions. It remains unclear whether reported deficits in newborn PMN function represent maturational disorders or are manifestations of some form of perinatal suppression phenomenon. We therefore compared the ability of bovine newborn PMNs (less than 24 h old), newborn PMNs (7–10 days of age), fetal PMNs (210–220 days gestational age), and adult PMNs to generate superoxide anion (O 2 ) as an indicator of respiratory burst activity. Citrated biood was collected, and PMNs were isolated to greater than 95% purity and 98% viability. O 2 generation was measured as the superoxide dismutase-inhibitable (10 μg/ml) reduction of ferricytochrome c (2 mg/ml) after activation of PMNs with phorbol myristate acetate (PMA, 2 μg/ml) to directly stimulate protein kinase C. The reaction kinetics were measured (37°C, 550 nm) using a spectrophotometer and chart recorder for continuous monitoring. O 2 generation was measured for 5 min after the initial lag period and the total nanomoles of O 2 generated calculated using the extinction coefficient for ferricytochromec. Newborn PMNs (N=10) generated significantly less O 2 (5.7 ±0.8 nmol O 2 /106 cells/5 min,P < 0.01) than did adult PMNs (N=14) (9.6 ±2.1 nmol O 2 /1010 cells/5 min) or fetal PMNs (N=4) (10.7 ±0.7 nmol O 2 /106 cells/5 min). PMNs from 7-to 10-day-old calves (N=9) generated almost identical amounts of O 2 as newborn PMNs (5.7 ±1.6 nmol O 2 /106 ceils/5 min). There was no difference in measured lag time period between new-born and adult PMNs, but fetal PMNs had significantly reduced (P < 0.01) mean lag time. The data indicated that bovine newborn PMNs have a decreased ability to generate O 2 in response to PMA stimulation, which persists for at least 7–10 days, and that this functional decrement may be a manifestation of some form of perinatal PMN suppression phenomenon rather than a developmental abnormality since fetal PMNs produced O 2 as well as adult PMNs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Faden, H., andS. Rosales. 1984, Infections in the compromised neonate.In Neonatal Infections: Nutritional and Immunologic Interactions. P. L. Ogra, editor. Grune & Stratton, Orlando, Florida. 185–202.

    Google Scholar 

  2. Medici, M. A., C. T. Ukrainski, andR. A. Gatti. 1979. The neonatal inflammatory response.In Pediatric Immunology. H. Hodes and B. M. Kagen, editors. Science and Medicine Publ., New York. 89–111.

    Google Scholar 

  3. Bortolussi, R. 1984. Host defense mechanisms to perinatal and neonatal infection.Survey Synth. Pathol. Res. 3:311–328.

    Google Scholar 

  4. Banks, K. L. 1982. Host defense in the newborn animal.J. Am. Vet. Med. Assoc. 181:1053–1056.

    Google Scholar 

  5. Bryson, D. G., J. B. McFerran, H. J. Ball, andS. D. Neill. 1978. Observations on out-breaks of respiratory disease in housed calves. 1. Epidemiological, clinical and microbiological findings.Vet. Rec. 103:485–489.

    Google Scholar 

  6. Bryson, D. G., J. B. McFerran, H. J. Ball, andS. D. Neill, 1978. Observations on out-breaks of respiratory disease in housed calves. 2. Pathological and microbiological findings.Vet. Rec. 103:503–509.

    Google Scholar 

  7. Irwin, V. C. 1974. Incidence of disease in colostrum-deprived calves.Vet. Rec. 94:105–106.

    Google Scholar 

  8. Martinez, M., A. E. Freeman, andP. J. Berger. 1983. Factors affecting calf livability for Holsteins.J. Dairy Sci. 66:2400–2407.

    Google Scholar 

  9. McGuire, T. C., N. E. Pfeiffer, J. M. Weikerl, andR. G. Bartsch. 1976. Failure of colostral immunoglobulin transfer in calves dying from infectious disease.J. Am. Vet. Med. Assoc. 169:713–716.

    Google Scholar 

  10. Rosenquist, B. D., andA. W. Dobson. 1974. Multiple viral infections in calves with acute bovine respiratory tract disease.Am. J. Vet. Res. 35:363–365.

    Google Scholar 

  11. Martin, S. W., C. W. Schwabe, andC. E. Franti. 1975. Dairy calf mortality rate: Characteristics of calf mortality rates in Tulare County, California.Am. J. Vet. Res. 36:1099–1104.

    Google Scholar 

  12. Speer, C. P., andR. B. Johnston, Jr. 1984. Phagocyte function.In Neonatal Infections: Nutritional and Immunologic Interactions. P. L. Ogra, editor. Grune & Stratton, Orlando, Florida. 21–36.

    Google Scholar 

  13. Hill, H. R. 1987. Biochemical, structural, and functional abnormalities of polymorphonuclear leukocytes in the neonate.Pediatr. Res. 22:375–382.

    Google Scholar 

  14. Miller, M. E. 1971. Chemotactic function in the human neonate: humoral and cellular aspects.Pediatr. Res. 5:487–492.

    Google Scholar 

  15. Anderson, D. C., B. J. Hughes, andC. W. Smith. 1981. Abnormal motility of neonatal polymorphonuclear leukocytes: Relationship to impaired redistribution of surface adhesion sites by chemotactic factor or colchicine.J. Clin. Invest. 68:863–874.

    Google Scholar 

  16. Anderson, D. C., B. J. Hughes, L. J. Wible, G. J. Perry, C. W. Smith, andB. R. BrinkLey. 1984. Impaired motility of neonatal PMN leukocytes: Relationship to abnormalities of cell orientation and assembly of microtubules in chemotactic gradients.J. Leukocyte Biol. 36:1–15.

    Google Scholar 

  17. Christensen, R. D., andG. Rothstein. 1980. Efficiency of neutrophil migration in the neonate.Pediatr. Res. 14:1147–1149.

    Google Scholar 

  18. Chirico, G., M. Marconi, M. Deamici, A. Gasparoni, andG. Mingrat. 1985. Deficiency of bactericidal activity in term and premature infants: A longitudinal study.Biol. Neonate 47:125–129.

    Google Scholar 

  19. Mease, A. D., G. W. Fischer, K. W. Hunter, andF. B. Ruymann. 1980. Decreased phy-tohemagglutinin-induced aggregation and C5a-induced chemotaxis of human newborn neutrophils.Pediatr. Res. 14:142–146.

    Google Scholar 

  20. Mease, A. D., D. P. Burgess, andP. J. Thomas. 1981. Irreversible neutrophil aggregation: A mechanism of decreased newborn neutrophil chemotactic response.Am. J. Palhol. 104:98–102.

    Google Scholar 

  21. Harris, M. C., J. Stroobant, C. S. Cody, S. D. Douglas, andR. A. Polin. 1983. Phagocytosis of Group B Streptococcus by neutrophils from newborn infants.Pediatr. Res. 17:358–361.

    Google Scholar 

  22. Marodi, L., P. C. J. Leijh, andR. van Furth. 1984. Characteristics and functional capacities of human cord blood glanulocytes and monocytes.Pediatr. Res. 18:1127–1131.

    Google Scholar 

  23. Olson, T. A., F. B. Ruyman, B. A. Cook, D. P. Burgess, S. A. Henson, andP. J. Thomas. 1983. Newborn polymorphonuclear leukocyte aggregation: A study of physical properties and uitrastructure using chemotactic peptides.Pediatr. Res. 17:993–998.

    Google Scholar 

  24. Mills, E. L., T. Thompson, B. Bjorksten, D. Filipovich, andP. G. Quie. 1979. The chemiluminescence response of bactericidal activity of polymorphonuclear neutrophils from newborns and their mothers.Pediatrics 63:429–434.

    Google Scholar 

  25. Wright, W. C., Jr., B. J. Ank, J. Hebert, andE. R. Stiehm. 1975. Decreased bactericidal activity of leukocytes from stressed newborn infants.Pediatrics 56:579–584.

    Google Scholar 

  26. Rider, E. D., R. D. Christensen, D. C. Hall, andG. Rothstein. 1988. Myeloperoxidase deficiency in neutrophils of neonates.J. Pediatr. 112:648–651.

    Google Scholar 

  27. Park, B. H., B. Holmes, andR. A. Good. 1970. Metabolic activities in leukocytes of newborn infants.J. Pediatr. 76:237–241.

    Google Scholar 

  28. Ambruso, D. R., K. M. Altenberger, andR. B. Johnston, Jr. 1979. Defective oxidative metabolism in newborn neutrophils: discrepancy between superoxide anion and hydroxyl radical generation.Pediatrics 64:722–725.

    Google Scholar 

  29. Strauss, R. G., andE. L. Snyder. 1983. Activation and activity of the superoxide generating system of neutrophils from human infants.Pediatr. Res. 17:662–664.

    Google Scholar 

  30. Yamazaki, M., T. Matsuoka, K. Yasut, A. Komiyama, andT. Akabane. 1988. Increased production of superoxide anion by neonatal polymorphonuclear leukocytes stimulated with a chemotactic peptide.Am. J. Hematol. 27:169–173.

    Google Scholar 

  31. Ambruso, D. R., L. C. Stork, B. E. Gibson, andG. W. Thruman. 1987. Increased activity of the respiratory burst in cord blood neutrophils: kinetics of the NADPH oxidase enzyme system in subcellular fractions.Pediatr. Res. 21:205–210.

    Google Scholar 

  32. Ambruso, D. R., B. Bentwood, P. M. Henson, andR. B. Johnston, Jr. 1984. Oxidative metabolism of or cord blood neutrophils: Relation to content and degranulation of cytoplasmic granules.Pediatr. Res. 18:1148–1153.

    Google Scholar 

  33. Bellanti, J. A., B. E. Cantz, M. C. Yaxg, H. Von Thadden, andR. J. Schlegel. 1975. Biochemical changes in human polymorphonuclear leukocytes during maturation.In The Phagocytic Cell in Host Resistance. J. A. Bellanti and D. H. Dayton, editors. Raven Press, New York. 321–329.

    Google Scholar 

  34. Strauss, R. G., T. G. Rosenberger, andP. D. Wallace. 1980. Neutrophil chemilumi-nescence during the first month of life.Acta Haematol. 63:326–330.

    Google Scholar 

  35. Van Epps, D. E., J. S. Goodwin, andS. Murphy. 1978. Age-dependent variations in polymorphonuclear leukocyte chemiluminescence.Infect. Immun. 22:57–61.

    Google Scholar 

  36. Peden, D. B., K. Van Dyke, A. Ardekani, M. D. Mullett, D. Z. Myerberg, andC. Van Dyke. 1987. Diminished chemiluminescent responses of polymorphonuclear leukocytes in severely and moderately premature infants.J. Pediatr. 111:904–906.

    Google Scholar 

  37. Zwahlen, R. D., D. O. Slauson, N. R. Neilsen, andC. B. Clifford. 1987. Increased adhesiveness of complement-stimulated neonatal calf neutrophils and its pharmacologic inhibition.J. Leukocyte Biol. 41:465–473.

    Google Scholar 

  38. Hauser, M. A., M. D. Koob, andJ. A. Roth. 1986. Variation of neutrophil function with age in calves.Am. J. Vet. Res. 47:152–153.

    Google Scholar 

  39. Hill, H. R. 1985. Host defense in the neonate: prospects for enhancement.Semin. Perinatal. 9:2–11.

    Google Scholar 

  40. Newburger, P. E. 1976. Superoxide generation by human fetal granulocytes.Pediatr. Res. 16:373–376.

    Google Scholar 

  41. Rotrosen, D., andJ. I. Gallin. 1987. Disorders of phagocyte function.Annu. Rev. Immunol. 5:127–150.

    Google Scholar 

  42. Forman, H. J., andM. J. Thomas. 1986. Oxidant production and bactericidal activity of phagocytes.Annu. Rev. Physiol. 48:669–680.

    Google Scholar 

  43. Pross, S. H., J. A. Hallock, R. Armstrong, andC. W. Fishel. 1977. Complement and Fc receptors on cord blood and adult neutrophils.Pediatr. Res. 11:135–137.

    Google Scholar 

  44. Osburn, B. I. 1981. The ontogeny of the ruminant immune system and its significance in the understanding of matemal-fetal-neonatal relationships. The ruminant immune system.Adv. Exp. Med. Biol. 137:91–103.

    Google Scholar 

  45. Bruce, M. C., J. E. Baley, K. A. Medvik, andM. Berger. 1987. Impaired surface membrane expression of C3bi but not C3b receptors on neonatal neutrophils.Pediatr. Res. 21:306–311.

    Google Scholar 

  46. Wolfson, M., L. C. McPhail, V. N. Nasrallah, andR. Snyderman 1985. Phorbol my ristate acetate mediates redistribution of protein kinase C in human neutrophils: Potential role in the activation of the respiratory burst enzyme.J. Immunol. 135:2057–2061.

    Google Scholar 

  47. Tauber, A. I. 1987. Protein kinase C and the activation of the human neutrophil NADPH-oxidase.Blood 69:711–720.

    Google Scholar 

  48. Johnston, R. B., C. A. Godzik, andZ. Cohn. 1978. Increased superoxide anion production by immunologically activated and chemically elicited macrophages.J. Exp. Med. 148:115–127.

    Google Scholar 

  49. Hollander, M., andD. Wolfe. 1973. Nonparametric Statistical Methods. John Wiley & Sons, New York. 115.

    Google Scholar 

  50. Zeligs, B. J., andJ. A. Bellanti. 1988. Inflammatory influx and oxidative burst components during postnatal development.Pediatr. Res. 23:463A.

    Google Scholar 

  51. Thorburn, G. D., andJ. R. G. Challis. 1979. Endocrine control of parturition.Physiol. Rev. 59:863–918.

    Google Scholar 

  52. Eberhart, R. J., andJ. A. Patt. 1971. Plasma cortisol concentrations in newborn calves.Am. J. Vet. Res. 32:1921–1927.

    Google Scholar 

  53. Roth, J. A., M. L. Kaeberle, andW. Hsu. 1982. Effects of ACTH administration on bovine polymorphonuclear leukocyte function and lymphocyte blastogenesis.Am. J. Vet. Res. 43:412–416.

    Google Scholar 

  54. Henricks, P. A. J., G. J. Binkhorst, andF. P. Nijkamp. 1987. Stress diminishes infiltration and oxygen metabolism of phagocytic cells in calves.Inflammation 11:427–437.

    Google Scholar 

  55. Krause, P., H. Malkech, J. Kristie, C. M. Kosciol, V. C. Herson, L. Eisenfeld, W. T. Pastuszak, A. Kraus, andB. Seligman. 1986. Polymorphonuclear leukocyte heterogeneity in neonates and adults.Blood 68:200–204.

    Google Scholar 

  56. Berkow, R. L., andR. W. Dodson. 1987. Functional analysis of the marginating pool of human polymorphonudear leukocytes.Am. J. Hematot. 24:47–54.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clifford, C.B., Slauson, D.O., Neilsen, N.R. et al. Ontogeny of inflammatory cell responsiveness. Inflammation 13, 221–231 (1989). https://doi.org/10.1007/BF00924792

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00924792

Keywords

Navigation