Advertisement

Theoretical calculation of the spin-spin interaction in the NMR spectra of a peptide fragment

Communication 3. Vicinal constants of1H...3C and13C...13C for the torsional angle Φ
  • V. N. Solkan
  • V. F. Bystrov
Physical Chemistry

Conclusions

  1. 1.

    The vicinal spin-spin interaction constants (SSIC) between1H and13C nuclei in a peptide fragment, dependent on the rotational state of the N-Cα bond (the torsional angle Φ), were calculated by a quantum chemical method.

     
  2. 2.

    These SSIC, together with the SSIC of1H-NCα-1H, in general permit a determination of the rotational state of the N-Cα bond in peptide systems.

     
  3. 3.

    A general tendency toward proportionality between pairs of the following vicinal SSIC was noted:1H...1H and1H...13C,1H...1H and1H...15N,1H...13C and13C...13C,1H...1H and13C...13C.

     

Keywords

Peptide Theoretical Calculation Chemical Method Quantum Chemical Torsional Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. N. Solkan and V. F. Bystrov, Tetrahedron Letters, 2261 (1973).Google Scholar
  2. 2.
    V. N. Solkan and V. F. Bystrov, Izv. Akad. Nauk SSSR, Ser. Khim., 102 (1974).Google Scholar
  3. 3.
    IUPAC-IUB Commission on Biochemical Nomenclature, J. Mol. Biol.,52, 1 (1970); J. Biol. Chem.,245, 6489 (1970); Biochemistry,9, 3471 (1970); Europ. J. Biochem.,17, 193 (1970): Biochem. J.,121, 577 (1971).Google Scholar
  4. 4.
    V. F. Bystrov, V. T. Ivanov, S. L. Portnova, T. A. Balashova, and Yu. A. Ovchinnikov, Tetrahedron,29, 873 (1973).Google Scholar
  5. 5.
    M. Barfield and H. L. Gearhart, J. Amer. Chem. Soc.,95, 641 (1973).Google Scholar
  6. 6.
    G. Giessner-Prettre, Comp.Rend.,D276, 1045 (1973).Google Scholar
  7. 7.
    J. A. Pople, J. W. McIver, Jr., and N. S. Ostlund, J. Chem. Phys.,49, 2960, 2965 (1968).Google Scholar
  8. 8.
    J. A. Pople, D. L. Beveridge, and P. A. Dobosh, J. Chem. Phys.,47, 2026 (1967).Google Scholar
  9. 9.
    M. Karplus, J. Chem. Phys.,30, 11 (1959); J. Amer. Chem. Soc.,85, 2870 (1963).Google Scholar
  10. 10.
    R. Wasylishen and T. Schaefer, Cand. J. Chem.,50, 2710 (1972).Google Scholar
  11. 11.
    G. E. Maciel, J. W. McIver, Jr., N. S. Ostlund, and J. A. Pople, J. Amer. Chem. Soc.,92, 4497 (1970).Google Scholar
  12. 12.
    R. U. Lemieux, T. L. Nagabhushau, and B. Paul, Canad. J. Chem.,50, 773 (1972).Google Scholar
  13. 13.
    S. Karplus and M. Karplus, Proc. Nat. Acad. Sci. USA,69, 3204 (1972).Google Scholar
  14. 14.
    A. H. Cowley and W. D. White, J. Amer. Chem. Soc.,91, 1917 (1969).Google Scholar
  15. 15.
    R. J. Abrahamson and J. A. Pople, Mol. Phys.,3, 609 (1960).Google Scholar

Copyright information

© Consultants Bureau 1974

Authors and Affiliations

  • V. N. Solkan
    • 1
  • V. F. Bystrov
    • 1
  1. 1.Shemyakin Institute of the Chemistry of Natural CompoundsAcademy of Sciences of the USSRUSSR

Personalised recommendations