Dipole moments and heats of formation of complexes of aluminum bromide with ketones

  • I. P. Romm
  • L. I. Belen'kii
  • E. N. Gur'yanova
  • Yu. K. Tovbin
Physical Chemistry

Conclusions

  1. 1.

    The complex formation of aluminum bromide with a number of aliphatic, aromatic, and heteroaromatic ketones was investigated by methods of calorimetry, dielectrometry, and cryoscopy in benzene. The composition, dipole moments, and heats of formation of the complexes were determined.

     
  2. 2.

    Aromatic and heteroaromatic ketones are stronger n-donors than aliphatic ketones. This is association with the increasedπ-electron density on the carbonyl oxygen atom in aromatic and heteroaromatic ketones.

     
  3. 3.

    Certain aromatic and heteroaromatic ketones form not only complexes with the composition D ·AlBr3 (D is a donor), but also complexes with composition D·2AlBr3, in which the second AlBr3 group is bonded to a 1:1 compound, probably according to the type of aπ-complex.

     
  4. 4.

    The degree of charge transfer and the enthalpy of formation of the donor-acceptor bond in complexes of AlBr3 with ketones are close to the corresponding parameters in complexes of AlBr3 with ethers.

     

Keywords

Oxygen Aluminum Ether Enthalpy Benzene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    E. N. Gur'yanova, I. P. Gol'dshtein, and I. P. Romm, The Donor-Acceptor Bond [in Russian], Khimiya (1973).Google Scholar
  2. 2.
    I. P. Romm, E. N. Gur'yanova, E. N. Kharlamova, R. R. Shifrina, N. N. Shapet'ko, and K. A. Kocheshkov, Dokl. Akad. Nauk SSSR,189, 810 (1969); I. P. Romm, E. N. Kharlamova, and E. N. Gur'yanova, Zh. Obshch. Khimii,42, 2246 (1972).Google Scholar
  3. 3.
    I. P. Romm and E. N. Gur'yanova, Zh. Obshch. Khimii,38, 1927 (1968).Google Scholar
  4. 4.
    I. P. Gol'dshtein, E. N. Gur'yanova, and I. R. Karpovich, Zh. Fiz. Khimii,39, 932 (1965).Google Scholar
  5. 5.
    W. Fischer and O. Ralfs, Z. Anorgan. und Allgem. Chem.,205, 1 (1932).Google Scholar
  6. 6.
    E. N. Gur'yanova and I. P. Gol'dshtein, Zh. Obshch. Khimii,32, 12 (1962).Google Scholar
  7. 7.
    V. A. Smrchek, I. P. Romm, V. F. Traven', and B. I. Stepanov, Tr. Mosk. Khim.-Tekhnol. In-ta im. D. I. Mendeleeva,70, 22 (1972).Google Scholar
  8. 8.
    Yu. A. Zhdanov andV. I. Minkin, Correlation Analysis in Organic Chemistry [in Russian], Izd. Rostovsk. Un-ta (1966), p. 312; V. A. Smrchek, V. F. Traven', and B. I. Stepanov, Zh. Obshch. Khimii,42, 2099 (1972).Google Scholar
  9. 9.
    I. P. Romm, É. M. Sadykova, E. N. Gur'yanova, and I. D. Kolli, Zh. Obshch. Khimii,43, 728 (1973).Google Scholar
  10. 10.
    E. Streitwiser, The Theory of Molecular Orbitals for Organic Chemists [Russian translation], Mir (1965), p. 126.Google Scholar
  11. 11.
    V. Chevrier, J. M. Le Carpentier, and R. Weiss, Acta Crystallogr.,28, 2659, 2667 (1972); J. M. Le Carpentier and R. Weiss, Ibid.,28, 1437, 1442 (1972).Google Scholar
  12. 12.
    I. P. Romm, L. I. Belen'kii, and E. N. Gur'yanova, Izv. Akad. Nauk SSSR, Ser. Khim., 2783 (1973).Google Scholar
  13. 13.
    L. I. Belen'kii, I. B. Karmanova, Yu. B. Vol'kenshtein, P. V. Petrovskii, L. A. Fedorov, and Ya. L. Gol'dfarb, Izv. Akad. Nauk SSSR, Ser. Khim., 1725 (1974).Google Scholar
  14. 14.
    J. Wilkinson and F. Cotton, Uspekhi Khimii,31, 838 (1962); V. G. Andrianov, V. P. Biryukov, and Yu. T. Struchkov, Zh. Struktur. Khimii,10, 1129 (1969).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • I. P. Romm
    • 1
    • 2
  • L. I. Belen'kii
    • 1
    • 2
  • E. N. Gur'yanova
    • 1
    • 2
  • Yu. K. Tovbin
    • 1
    • 2
  1. 1.N. D. Zelinskii Institute of Organic ChemistryAcademy of Sciences of the USSRMoscow
  2. 2.L. Ya. Karpov Physicochemical InstituteMoscow

Personalised recommendations