Skip to main content
Log in

Different regional changes of fluorescence spectra of clear human lenses and nuclear cataracts

  • Clinical Investigations
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Fluorescence spectra are recorded from the cortex and nucleus of the same human lenses [clear and cataracta brunescens (nigra) with colorless cortex]. When comparing clear cortices with either the harder nucleus of a clear lens, or a cataracta brunescens for a given excitation wavelength, a shift of the fluorescence maxima of the nucleus to longer wavelengths is observed. The shift appears to be independent of the degree of coloring since it is very similar for different nuclei, and it is not increased in cataracta nigra. The fluorescence intensities are similar when comparing the clear cortex of clear lenses and cataracta brunescens. For the nuclei, however, the intensity increases by up to four to six times with increasing coloring. For constant excitation wavelength, the fluorescence band maximum of the nucleus (of clear lenses and of cataracta brunescens) exhibits roughly the same shift to longer wavelengths as that of the cortex. Upon 320 nm excitation the fluorescence intensity of a cataracta nigra is about twice that of a clear lens of juvenile age. Upon 380 nm excitation the factor increases to four. Therefore in older and colored lens nuclei a red shift of the fluorescence maximum with increasing excitation wavelength is observed. We discuss whether or not the changes in the molecular proteins, in addition to advanced glycolization end products, may be responsible for the different fluorescence properties (and the brown color) with increasing age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Augusteyn R (1975) Distribution of fluorescence in the human cataractous lens. Ophthalmic Res 7:217–224

    Google Scholar 

  2. Bando M, Nakajima A, Sato K (1975) Coloration of human lens protein. Exp Eye Res 20:489–92

    Google Scholar 

  3. Bensel KG, Fleming JE, Lohmann W (1985) The role of ascorbic acid in senile cataracts. Proc Natl Acad Sci USA 82:7193–7196

    Google Scholar 

  4. Bloemendahl H (1981) Molecular and cellular biology of the eye lens. Wiley, New York

    Google Scholar 

  5. Borkman RF, Tassin JD, Lerman S (1981) Fluorescence lifetimes of chromatophores in intact human lenses and lens proteins. Exp Eye Res 32:313–322

    Google Scholar 

  6. Cerami A, Vlassara H, Brownlee M (1988) Role of advanced glycolization products in complications of diabetes. Diabetes Care 11 [Suppl 1]:73–79

    Google Scholar 

  7. Chang JCF, Ulrich PC, Bucala R, Cerami A (1985) Detection of an advanced glycozylation bound to protein in situ. J Biol Chem 260:7970–7975

    Google Scholar 

  8. Degen J, Schmidtke H-H (1989) Temperature dependent luminescence spectra and lifetime measurements of octahedral Se(IV) and Te(IV) hexahalogeno coordination compounds. Chem Phys 129:483–489

    Google Scholar 

  9. Dilley KJ, Pirie A (1974) Changes to the proteins of the human lens nucleus in cataract. Exp Eye Res 19:59–72

    Google Scholar 

  10. Dillon J, Atherton SJ (1990) Time resolved spectroscopic studies in intact human lens. Photochem Photobiol 51:465–468

    Google Scholar 

  11. Eaton WA, Lovenberg W (1970) Near infrared circular dichroism of an iron-sulfur protein. d-d transitions in rubredoxin. J Am Chem Soc 92:7195–7198

    Google Scholar 

  12. Fraser RDB, Suzuki E (1970) Infrared methods. In: Leak SJ (ed) Physical principles and techniques of protein chemistry, vol II. Academic Press, New York, pp 213–273

    Google Scholar 

  13. Hoenders HJ, Bloemendahl H (1985) Chemie der Kristalline. In: Hockwin O (ed) Biochemie des Auges. Enke, Stuttgart, pp 93–99

    Google Scholar 

  14. Kluxen G (1968) Klinische und experimentelle Untersuchungen von Altersstaren. Fortschr Med 103:270–272

    Google Scholar 

  15. Lerman S, Borkman RF (1976) Spectroscopic evaluation and classification of the normal, aging and cataractous lens. Ophthalmic Res 8:335–353

    Google Scholar 

  16. Lerman S, Borkman RF (1978) UV-radiation in the aging and cataractous lens. Acta Ophthalmol 56:139–149

    Google Scholar 

  17. Lerman S (1980) Radiant energy and the eye. McMillan, New York

    Google Scholar 

  18. Lerman S (1985) Direkte UV-Strahlung. In: Hockwin O (ed) Biochemie des Auges. Enke, Stuttgart, pp 242–246

    Google Scholar 

  19. Lerman S (1988) Human lens fluorescence aging index. Lens Res 5:23–31

    Google Scholar 

  20. Lohmann W (1988) Native fluorescence of lenses with nuclear cataract. Lens Res 5:33–39

    Google Scholar 

  21. Lohmann W, Schmehl W, Strobel J (1986) Nuclear cataract: oxidative damage to the lens. Exp Eye Res 43:859–862

    Google Scholar 

  22. Lohmann W, Strobel J, Jacobi KW, Schmehl W, Wickert H (1989) Natürliche Fluoreszenz von Kern-Katarakt-Linsen und von Melanomen am Auge. Fortschr Ophthalmol 86:23–25

    Google Scholar 

  23. Monnier VM, Cerami A (1981) Nonenzymatic browning in vivo: possible process for long-lived proteins. Science 211:491–493

    Google Scholar 

  24. Nordmann J, Mack G, Mack G (1974) Nucleus of the human lens. Ophthalmic Res 6:216–222

    Google Scholar 

  25. Pau H (1950) Beitrag zur Kataraktgenese. Graefes Arch Clin Exp Ophthalmol 150:340–357

    Google Scholar 

  26. Pau H (1951) Die cataracta nuclearis (brunescens) als Zeichen einer degenerativen Bulbusverdnderung. Klin Monatsbi Augenheilkd 119:16–19

    Google Scholar 

  27. Pau H, Kranz J (1991) The increasing sclerosis of human lens nucleus with age and its relevance to accomodation and presbyopia. Graefe's Arch Clin Exp Ophthalmol 229:294–296

    Google Scholar 

  28. Pirie A (1968) Color and solubility of the proteins of human cataracts. Invest. Ophthalmol Vis Sci 7:634–650

    Google Scholar 

  29. Reinecke K (1988) Bestimmung der Lumineszenzquantenausbeute von Übergangsmetallkomplexen durch zeitaufgelöste Untersuchung der thermischen Linse. Thesis, University of Düsseldorf

  30. Satoh H, Bando K, Nakajima A (1973) Fluorescence in human lens. Exp Eye Res 16:167–172

    Google Scholar 

  31. Strobel J, Jacobi KW, Schmehl W, Wunderling M, Ibrahim M (1986) Die Bedeutung von Flureszenzspektren für die Beurteilung von Linsentrübungen. Klin Monatsbi Augenheilkd 189:141–143

    Google Scholar 

  32. Zigman S, Geiss G, Yulo T, Schultz J (1973) Ocular protein alteration by near UV light. Exp Eye Res 15:255–264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pau, H., Degen, J. & Schmidtke, HH. Different regional changes of fluorescence spectra of clear human lenses and nuclear cataracts. Graefe's Arch Clin Exp Ophthalmol 231, 656–661 (1993). https://doi.org/10.1007/BF00921961

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00921961

Keywords

Navigation