Investigations on the nucleation parameters of InGaAs grown on InP during LPE

  • R. Jothilingam
  • R. Dhanasekaran
  • P. Ramasamy


The initial stages of LPE growth of the InGaAs ternary compound on an InP substrate were analysed using the classical heterogeneous nucleation theory, incorporating lattice mismatch between the grown alloy and the substrate. The explicit expression for the lattice mismatch induced supercooling for the growth of the chosen system was established, and it was used to evaluate the nucleation parameters. It has been proved theoretically that the nucleation barrier for the formation of InxGa1 −x As on InP depends very strongly on the composition of the alloy; the condition for the growth of good quality InGaAs on InP was calculated.


Electronic Material Explicit Expression Heterogeneous Nucleation Lattice Mismatch Ternary Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. AMANO, KEN-ICHIRO TAKAHEI and H. NAGAI,Jpn J. Appl. Phys. 20 (1981) 2105.Google Scholar
  2. 2.
    S. H. GROVES and M. C. PLONKO,Appl. Phys. Lett. 38 (1981) 1003.Google Scholar
  3. 3.
    R. F. LEBENY, R. E. POPLLACK, E. D. BEEBE and J. C. D. WINTER,IEEE J. Quantum Electron. QE-17 (1981) 5738.Google Scholar
  4. 4.
    K. J. BACHMANN and J. L. SHAY,Appl. Phys. Lett. 32 (1978) 446.Google Scholar
  5. 5.
    T. P. PEARSALL, R. BISARO, R. ANSEL and P. MERENDA,Appl. Phys. Lett. 32 (1978) 497.Google Scholar
  6. 6.
    T. P. PEARSALL and M. PAPUCHON,Appl. Phys. Lett. 33 (1978) 640.Google Scholar
  7. 7.
    Y. TAKEDA, A. SASAKI, Y. IMAMURA and T. TAKAGI,J. Appl. Phys. 47 (1976) 5405.Google Scholar
  8. 8.
    S. B. HYDER, G. A. ANTYPAS, J. S. ESCHER and P. E. GREGORY,Appl. Phys. Lett. 31 (1977) 551.Google Scholar
  9. 9.
    T. P. PEARSALL, M. QUILLEC and M. A. POLLACK,Appl. Phys. Lett. 35 (1979) 342.Google Scholar
  10. 10.
    K. NAKAJIMA, T. TANAHASHI, K. AKITA and T. YAMAOKA,J. Appl. Phys. 50 (1979) 4975.Google Scholar
  11. 11.
    N. CHAND, A. V. SYRBU and P. A. HOUSTON,J. Cryst. Growth 61 (1983) 53.Google Scholar
  12. 12.
    S.S. CHANDVANKAR and B. M. ARORA,J. Cryst. Growth 94 (1989) 270.Google Scholar
  13. 13.
    R. SANKARAN, R. L. MOON and G. A. ANTYPAS,J. Cryst. Growth 33 (1976) 271.Google Scholar
  14. 14.
    T. P. PEARSALL and R. W. HOPSON,J. Elect. Mater. 7 (1978) 133.Google Scholar
  15. 15.
    Y. TAKEDA and A. SASAKI,J. Cryst. Growth 45 (1978) 257.Google Scholar
  16. 16.
    Yu. B. BOLKHOVITYANOV,J. Cryst. Growth 57 (1982) 84.Google Scholar
  17. 17.
    U. KONIG, W. KECK and A. KRIKS,J. Cryst. Growth 68 (1984) 545.Google Scholar
  18. 18.
    R. DHANASEKARAN. PhD thesis, Anna University, Madras (1984).Google Scholar
  19. 19.
    Yu. B. BOLKHOVITYANOV and Yu. D. VAULIN,Thin Solid Films 98 (1982) 41.Google Scholar
  20. 20.
    Yu. B. BOLKHOVITYANOV, V. I. YUDAEV and A. K. GUTAKOVSKY,Thin Solid Films 137 (1986) 111.Google Scholar
  21. 21.
    K. BHATTACHARYA and SOBHANA SRINIVASA,J. Appl. Phys. 54 (1983) 5090.Google Scholar
  22. 22.
    W. B. BRANTLEY,J. Appl. Phys. 44 (1973) 534.Google Scholar
  23. 23.
    T. Y. WU and G. L. PEARSON,J. Phys. Chem. Solids 33 (1972) 409.Google Scholar
  24. 24.
    M. B. PANISH and M. ILLEGEMS,Prog. Solid State Chem. 7 (1972) 39.Google Scholar
  25. 25.
    B. de CREMOUX,IEEE J. Quantum Electron. QE-17 (1981) 118.Google Scholar
  26. 26.
    R. M. POTEMSKI and M. B. SMALL,J. Cryst. Growth 62 (1983) 317.Google Scholar
  27. 27.
    H. SONOMURA, G. SUNATORI and T. MIYACHI,J. Appl. Phys. 53 (1982) 5336.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • R. Jothilingam
    • 1
  • R. Dhanasekaran
    • 1
  • P. Ramasamy
    • 1
  1. 1.Crystal Growth Centre, Anna UniversityMadrasIndia

Personalised recommendations