Advertisement

Investigation of inhibited internal rotation in certain substituted 4-thiolen-2-ones and 4-thiolene-2-thiones and their configuration by the PMR method

  • V. S. Bogdanov
  • M. A. Kalik
  • Ya. L. Gol'dfarb
Physical Chemistry

Conclusions

  1. 1.

    It was shown by the PMR method that in N,N-disubstituted 3-aminomethylene-4-thiolene-2-thiones and 3-aminomethylene-4-thiolen-2-ones, in contrast to N-monosubstituted analogs, the hydrogen atom of the side chain is in a cis-position to the carbon atom C-2 of the heterocyclic ring.

     
  2. 2.

    In the investigated compounds, rotation around the C-N bond is inhibited. The free energies of activation ΔG f were determined; for thiolenes they proved ∼3 kcal/mole lower than for the corresponding thiolenethiones.

     

Keywords

Hydrogen Free Energy Carbon Atom Hydrogen Atom Thiolenes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    V. S. Bogdanov, M. A. Kalik, Ya. L. Danyushevskii, and Ya. L. Gol'dfarb, Izv. Akad. Nauk SSSR, Ser. Khim., 2782 (1967).Google Scholar
  2. 2.
    V. S. Bogdanov, M. A. Kalik, I. P. Yakovlev, and Ya. L. Gol'dfarb, Zh. Obshch. Khimii,40, 2102 (1970).Google Scholar
  3. 3.
    V. S. Bogdanov, M. A. Kalik, Ya. L. Gol'dfarb, Izv. Akad. Nauk SSSR, Ser. Khim., 2413 (1970).Google Scholar
  4. 4.
    V. S. Bogdanov, M. A. Kalik, G. M. Zhidomirov, N. D. Chuvylkin, and Ya. L. Gol'dfarb, Zh. Organ. Khimii,7, 1953 (1971).Google Scholar
  5. 5.
    Ya. L. Gol'dfarb and M. A. Kalik, Izv. Akad. Nauk SSSR, Ser. Khim., 2072 (1973).Google Scholar
  6. 6.
    Ya. L. Gol'dfarb and M. A. Kalik, Khimiya Geterotsikl. Soed., 171 (1971).Google Scholar
  7. 7.
    G. Binsch, Topics in Stereochemistry,3, 97 (1968).Google Scholar
  8. 8.
    H. Kessler, Angew. Chemie, International Edition,9, 219 (1970).Google Scholar
  9. 9.
    H. S. Gutowsky and C. H. Holm, J. Chem. Phys.,25, 1228 (1956).Google Scholar
  10. 10.
    R. C. Neuman, Jr., D. N. Roark, and V. Jonas, J. Amer. Chem. Soc.,89, 3412 (1967).Google Scholar
  11. 11.
    W. Walter, E. Schowmann, and J. Voss, Organic Magnetic Resonance,3, 733 (1971).Google Scholar
  12. 12.
    M. Martin and G. Martin, Compt. Rend.,256, 403 (1963).Google Scholar
  13. 13.
    C. W. Haigh and R. B. Mallion, Organic Magnetic Resonance,4, 203 (1972).Google Scholar
  14. 14.
    C. E. Johnson and F. A. Bovey, J. Chem. Phys.,29, 1012 (1958).Google Scholar
  15. 15.
    K. Laidler, Kinetics of Organic Reactions [Russian translation], Mir (1966), p. 68.Google Scholar
  16. 16.
    H. G. Shmid, H. Friebolim, S. Kabuss, and R. Mecke, Spectrochim. Acta,22, 623 (1966).Google Scholar
  17. 17.
    H. Shonan-Atidi and K. H. Bar-Ell, J. Phys. Chem.,74, 961 (1970).Google Scholar
  18. 18.
    Y. Shvo, E. C. Taylor, and J. Bartulin, Tetrahedron Letters, 3259 (1967).Google Scholar

Copyright information

© Consultants Bureau 1974

Authors and Affiliations

  • V. S. Bogdanov
    • 1
  • M. A. Kalik
    • 1
  • Ya. L. Gol'dfarb
    • 1
  1. 1.N. D. Zelinskii Institute of Organic ChemistryAcademy of Sciences of the USSRMoscow

Personalised recommendations