Advertisement

Iron carbonyl complexes of the dialkylamides of α, β-unsaturated acids and of the trimethylaminoimide of acrylic acid

  • L. V. Rybin
  • A. A. Pogrebnyak
  • M. I. Rybinskaya
  • D. A. Bochvar
  • E. G. Gal'pern
  • N. P. Gambaryan
Organic and Biological Chemistry
  • 21 Downloads

Conclusions

  1. 1.

    We studied the reaction of the iron carbonyls with N, N-disubstituted amides and N,N,N-trisubstituted aminoamides ofα, β-unsaturated acids and compared the results with calculated data for the molecules of the given compounds and the cyclic N, N′-dimethylhydrazide of maleic acid.

     
  2. 2.

    The aggregate of the experimental and calculated data allows us to assume that the metal in the iron tricarbonyl complexes for these compounds is coordinated along the carbon-carbon and nitrogen-carbon bonds of the\(\begin{array}{*{20}c} \setminus \\ / \\ \end{array} C = \begin{array}{*{20}c} | \\ C \\ \end{array} ---CO---N\) grouping.

     

Keywords

Iron Amide Carbonyl Acrylic Acid Maleic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    A. N. Nesmeyanov, M. J. Rybinskaya, L. V. Rybin, L. V. Arutyunyan, L. G. Kuzmina, and Yu. T. Struchkov, J. Organometal. Chem.,73, 365 (1974).Google Scholar
  2. 2.
    L. A. Ovsyannikova, T. A. Sokolova, and N. P. Zapevalova, Zh. Organ. Khim.,4, 459 (1968).Google Scholar
  3. 3.
    R. C. Slagel and A. E. Bloomquist, Can. J. Chem.,45, 2625 (1967).Google Scholar
  4. 4.
    E. Weiss, K. Stark, J. E. Lancaster, and H. D. Murdoch, Helv. Chim. Acta,46, 288 (1963).Google Scholar
  5. 5.
    R. E. Desay, J. C. Charkoudian, T. P. Abeles, and A. L. Rhengold, J. Am. Chem. Soc.,92, 2947 (1970).Google Scholar
  6. 6.
    E. H. Schubert and R. K. Sheline, Inorg. Chem.,5, 1071 (1966).Google Scholar
  7. 7.
    K. Stark, J. E. Lancaster, H. D. Murdoch, and E. Weiss, Z. Naturforsch.,19b, 284 (1964).Google Scholar
  8. 8.
    E. A. Koerner von Gustorf, F. -W. Grevels, G. Kruger, G. Olbrich, F. Mark, D. Schulz, and R. Wagner, ibid.,27b, 392 (1972).Google Scholar
  9. 9.
    A. de Cian and R. Weiss, Chem. Commun., 348 (1968).Google Scholar
  10. 10.
    A. de Cian and R. Weiss, Acta Crystallogr.,B28, 3264 (1972).Google Scholar
  11. 11.
    Ibid., p. 3273.Google Scholar
  12. 12.
    H. tom Dieck and A. Orlopp, Angew, Chem. Internat. Ed.,14, 251 (1975).Google Scholar
  13. 13.
    E. Clementi and D. L. Raimondi, J. Chem. Phys.,38, 2686 (1963).Google Scholar
  14. 14.
    L. Pauling, The Nature of the Chemical Bond, Cornell University Press, New York (1960).Google Scholar
  15. 15.
    R. S. Mulliken, J. Chem. Phys.,23, 1833, 1841 (1955).Google Scholar
  16. 16.
    Ibid.,36, 3428 (1962).Google Scholar
  17. 17.
    L. C. Cusachs and J. W. Reynolds, J. Chem. Phys.,43, S160 (1965).Google Scholar
  18. 18.
    L. C. Cusachs and J. W. Reynolds, J. Chem. Phys.,44, 835 (1966).Google Scholar

Copyright information

© Plenum Publishing Corporation 1977

Authors and Affiliations

  • L. V. Rybin
    • 1
  • A. A. Pogrebnyak
    • 1
  • M. I. Rybinskaya
    • 1
  • D. A. Bochvar
    • 1
  • E. G. Gal'pern
    • 1
  • N. P. Gambaryan
    • 1
  1. 1.Institute of Heteroorganic CompoundsAcademy of Sciences of the USSRMoscow

Personalised recommendations